TIGIT is an immune checkpoint receptor expressed on activated and memory T cells, immunosuppressive T regulatory cells, and natural killer (NK) cells. TIGIT has emerged as an attractive target for antitumor therapies, due to its proposed immunosuppressive effects on lymphocyte function and T cell activation. We generated an anti-TIGIT monoclonal antibody (mAb) that binds with high affinity to human, non-human primate, and murine TIGIT and through multiple experimental methodologies demonstrated that checkpoint blockade alone is insufficient for antitumor activity.
View Article and Find Full Text PDFBrentuximab vedotin, a CD30-directed antibody-drug conjugate (ADC), is approved for clinical use in multiple CD30-expressing lymphomas. The cytotoxic payload component of brentuximab vedotin is monomethyl auristatin E (MMAE), a highly potent microtubule-disrupting agent. Preclinical results provided here demonstrate that treatment of cancer cells with brentuximab vedotin or free MMAE leads to a catastrophic disruption of the microtubule network eliciting a robust endoplasmic reticulum (ER) stress response that culminates in the induction of the classic hallmarks of immunogenic cell death (ICD).
View Article and Find Full Text PDFWe previously reported that selective ablation of certain γδ T cell subsets, rather than removal of all γδ T cells, strongly affects serum Ab levels in nonimmunized mice. This type of manipulation also changed T cells, including residual γδ T cells, revealing some interdependence of γδ T cell populations. For example, in mice lacking Vγ4(+) and Vγ6(+) γδ T cells (B6.
View Article and Find Full Text PDFγδ T cells can influence specific antibody responses. Here, we report that mice deficient in individual γδ T-cell subsets have altered levels of serum antibodies, including all major subclasses, sometimes regardless of the presence of αβ T cells. One strain with a partial γδ deficiency that increases IgE antibodies also displayed increases in IL-4-producing T cells (both residual γδ T cells and αβ T cells) and in systemic IL-4 levels.
View Article and Find Full Text PDFAutoreactive anergic B lymphocytes are considered to be dangerous because of their potential for activation and recruitment into autoimmune responses. However, they persist for days and constitute ∼5% of the B cell pool. We assessed their functional potential in the Ars/A1 transgene model, where anergic B cells express a dual-reactive Ag receptor that binds, in addition to a self-Ag, the hapten p-azophenylarsonate (Ars).
View Article and Find Full Text PDFA fundamental problem in immunoregulation is how CD4(+) T cells react to immunogenic peptides derived from the V region of the BCR that are created by somatic mechanisms, presented in MHC II, and amplified to abundance by B cell clonal expansion during immunity. BCR neo Ags open a potentially dangerous avenue of T cell help in violation of the principle of linked Ag recognition. To analyze this issue, we developed a murine adoptive transfer model using paired donor B cells and CD4 T cells specific for a BCR-derived peptide.
View Article and Find Full Text PDFLinked recognition of Ag by B and T lymphocytes is ensured in part by a state of tolerance acquired by CD4 T cells to germline-encoded sequences within the B cell Ag receptor (BCR). We sought to determine how such tolerance is attained when a peptide from the BCR variable (V) region is expressed by small numbers of B cells as it is in the physiological state. Mixed bone marrow (BM) chimeras were generated using donor BM from mice with B cells that expressed a transgene (Tg)-encoded κ L chain and BM from TCR Tg mice in which the CD4 T cells (CA30) were specific for a Vκ peptide encoded by the κTg.
View Article and Find Full Text PDFSystemic lupus erythematosus (SLE) is characterized by high-avidity IgG antinuclear antibodies (ANAs) that are almost certainly products of T cell-dependent immune responses. Whether critical amino acids in the third complementarity-determining region (CDR3) of the ANA originate from V(D)J recombination or somatic hypermutation (SHM) is not known. We studied a mouse model of SLE in which all somatic mutations within ANA V regions, including those in CDR3, could be unequivocally identified.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2005
We have developed a baculovirus-based display system for identifying antigen mimotopes for MHC class I-specific T cells. The mouse MHC class I molecule, Dd, was displayed on baculovirus-infected insect cells with a library of 9- and 10-mer peptides tethered via a flexible linker to the N terminus of beta2 microglobulin. As a test case, the library was screened by flow cytometry by using a multimeric fluorescent alphabetaTCR from a mouse T cell specific for Dd plus an unknown self peptide.
View Article and Find Full Text PDFThe presence of multiple Nav1 isotypes within a neuron and the lack of specific blockers hamper identification of the in vivo roles of sodium current (INa) components, especially during embryonic stages. To identify the functional properties of INa components in vivo in developing neurons, we took a molecular genetic approach. Embryonic zebrafish Rohon-Beard (RB) mechanosensory neurons express two different sodium channel isotypes: Nav1.
View Article and Find Full Text PDFAntibody diversity creates an immunoregulatory challenge for T cells that must cooperate with B cells, yet discriminate between self and nonself. To examine the consequences of T cell reactions to the B cell receptor (BCR), we generated a transgenic (Tg) line of mice expressing a T cell receptor (TCR) specific for a kappa variable region peptide in monoclonal antibody (mAb) 36-71. The kappa epitope was originally generated by a pair of somatic mutations that arose naturally during an immune response.
View Article and Find Full Text PDF