Publications by authors named "Ryan Hannagan"

Article Synopsis
  • Anion exchange membrane water electrolysis (AEMWE) is an effective method for generating hydrogen using affordable renewable energy sources, and recent improvements have been made in its efficiency and durability.* -
  • The study focuses on how the design and integration of materials in the membrane electrode assembly (MEA), especially in the anode catalyst layer, influence overall performance and efficiency.* -
  • Results show that a higher loading of catalysts with good electronic conductivity and uniform layers can significantly enhance performance, boosting current density by up to 55%, while less conductive or uneven layers yield minimal benefits.*
View Article and Find Full Text PDF

The identification of thermodynamic descriptors of catalytic performance is essential for the rational design of heterogeneous catalysts. Here, we investigate how spillover energy, a descriptor quantifying whether intermediates are more stable at the dopant or host metal sites, can be used to design single-atom alloys (SAAs) for formic acid dehydrogenation. Using theoretical calculations, we identify NiCu as a SAA with favorable spillover energy and demonstrate that formate intermediates produced after the initial O-H activation are more stable at Ni sites where rate-determining C-H activation occurs.

View Article and Find Full Text PDF

Renewable energy-driven bipolar membrane water electrolyzers (BPMWEs) are a promising technology for sustainable production of hydrogen from seawater and other impure water sources. Here, we present a protocol for assembling BPMWEs and operating them in a range of water feedstocks, including ultra-pure deionized water and seawater. We describe steps for membrane electrode assembly preparation, electrolyzer assembly, and electrochemical evaluation.

View Article and Find Full Text PDF

Dicarbonyl species are ubiquitous on Rh/oxide catalysts and are known to form on Rh centers. However, dicarbonyl species have never been directly observed on single-atom alloys (SAAs) where the active site is metallic. Herein, using surface science and theoretical modeling, we provide evidence of dicarbonyl species at isolated Rh sites on a RhCu(100) SAA.

View Article and Find Full Text PDF

Single-atom alloys (SAAs) make up a special class of alloy surface catalysts that offer well-defined, isolated active sites in a more inert metal host. The dopant sites are generally assumed to have little or no influence on the properties of the host metal, and transport of chemical reactants and products to and from the dopant sites is generally assumed to be facile. Here, by performing density functional theory calculations and surface science experiments, we identify a new physical effect on SAA surfaces, whereby adsorption is destabilized by ≤300 meV on host sites within the perimeter of the reactive dopant site.

View Article and Find Full Text PDF

Carbon-carbon coupling is an important step in many catalytic reactions, and performing sp-sp carbon-carbon coupling heterogeneously is particularly challenging. It has been reported that PdAu single-atom alloy (SAA) model catalytic surfaces are able to selectively couple methyl groups, producing ethane from methyl iodide. Herein, we extend this study to NiAu SAAs and find that Ni atoms in Au are active for C-I cleavage and selective sp-sp carbon-carbon coupling to produce ethane.

View Article and Find Full Text PDF

The formation of a two-phase surface molecular overlayer that transitions from isolated propene molecules to a highly ordered 1D chain structure on Cu(111) is elucidated through combined high-resolution STM imaging and DFT-based calculations. These models reveal how disordered molecules present in-between the 1D chains stabilizes the system as a whole.

View Article and Find Full Text PDF

Metal alloys are ubiquitous in many branches of heterogeneous catalysis, and it is now fairly well established that the local atomic structure of an alloy can have a profound influence on its chemical reactivity. While these effects can be difficult to probe in nanoparticle catalysts, model studies using well defined single crystal surfaces alloyed with dopants enable these structure-function correlations to be drawn. The first step in this approach involves understanding the alloying mechanism and the type of ensembles formed.

View Article and Find Full Text PDF

The conversions of surface-bound alkyl groups to alkanes and alkenes are important steps in many heterogeneously catalyzed reactions. On the one hand, while Pt is ubiquitous in industry because of its high activity toward C-H activation, many Pt-based catalysts tend to overbind reactive intermediates, which leads to deactivation by carbon deposition and coke formation. On the other hand, Cu binds intermediates more weakly than Pt, but activation barriers tend to be higher on Cu.

View Article and Find Full Text PDF

Single-atom alloys (SAAs) play an increasingly significant role in the field of single-site catalysis and are typically composed of catalytically active elements atomically dispersed in more inert and catalytically selective host metals. SAAs have been shown to catalyze a range of industrially important reactions in electro-, photo-, and thermal catalysis studies. Due to the unique geometry of SAAs, the location of the transition state and the binding site of reaction intermediates are often decoupled, which can enable both facile dissociation of reactants and weak binding of intermediates, two key factors for efficient and selective catalysis.

View Article and Find Full Text PDF

Chiral surfaces are of growing interest for enantioselective adsorption and reactions. While metal surfaces can be prepared with a wide range of chiral surface orientations, chiral oxide surface preparation is more challenging. We demonstrate the chirality of a metal surface can be used to direct the homochiral growth of a thin film chiral oxide.

View Article and Find Full Text PDF

We demonstrate that PdAu single-atom alloy model catalysts offer a heterogeneous route to selective Würtz-type C-C coupling. Specifically, when methyl iodide is exposed to an otherwise unreactive Au(111) surface, single Pd atoms in the surface layer promote C-I dissociation and C-C coupling, leading to the selective formation of ethane.

View Article and Find Full Text PDF

Enantioselective interactions underpin many important phenomena from biological mechanisms to chemical catalysis. In this regard, there is great interest in understanding these effects at the molecular level. Surfaces provide a platform for these studies and aid in the long-term goal of designing heterogeneous enantiospecific interfaces.

View Article and Find Full Text PDF