The regulatory mechanisms of the mitochondrial calcium uniporter complex (mtCU), the predominant channel mediating calcium (Ca ) flux into the matrix, are critical for bioenergetics and cell fate. The pore-forming components of mtCU are the mitochondrial Ca uniporter (MCU) subunit and the MCU dominant-negative beta (MCUb) subunit. Despite both MCU paralogs having conserved Asp-Ile-Met-Glu motifs responsible for Ca selectivity, MCUb mediates only low Ca conduction and has been characterized as an inhibitory subunit.
View Article and Find Full Text PDFα-Carboxyketose synthases, including 3-deoxy-d-heptulosonate 7-phosphate synthase (DAHPS), are long-standing targets for inhibition. They are challenging targets to create tight-binding inhibitors against, and inhibitors often display half-of-sites binding and partial inhibition. Half-of-sites inhibition demonstrates the existence of inter-subunit communication in DAHPS.
View Article and Find Full Text PDF3-Deoxy-d-heptulosonate-7-phosphate (DAHP) synthase catalyzes the first step in the shikimate biosynthetic pathway and is an antimicrobial target. We used an inhibitor-in-pieces approach, based on the previously reported inhibitor DAHP oxime, to screen inhibitor fragments in the presence and absence of glycerol 3-phosphate to occupy the distal end of the active site. This led to DAHP hydrazone, the most potent inhibitor to date, = 10 ± 1 nM.
View Article and Find Full Text PDFSNM1A is a nuclease required to repair DNA interstrand cross-links (ICLs) caused by some anticancer compounds, including cisplatin. Unlike other nucleases involved in ICL repair, SNM1A is not needed to restore other forms of DNA damage. As such, SNM1A is an attractive target for selectively increasing the efficacy of ICL-based chemotherapy.
View Article and Find Full Text PDFDNA interstrand crosslinks (ICLs) covalently join opposing strands, blocking both replication and transcription, therefore making ICL-inducing compounds highly toxic and ideal anti-cancer agents. While incisions surrounding the ICL are required to remove damaged DNA, it is currently unclear which endonucleases are needed for this key event. SNM1A has been shown to play an important function in human ICL repair, however its suggested role has been limited to exonuclease activity and not strand incision.
View Article and Find Full Text PDF