Background: Given the recent detection of tetrodotoxin (TTX) in bivalve molluscs but the absence of a full collaborative validation study for TTX determination in a large number of shellfish samples, interlaboratory assessment of method performance was required to better understand current capabilities for accurate and reproducible TTX quantitation using chemical and immunoassay methods.
Objective: The aim was to conduct an interlaboratory study with multiple laboratories, using results to assess method performance and acceptability of different TTX testing methods.
Methods: Homogenous and stable mussel and oyster materials were assessed by participants using a range of published and in-house detection methods to determine mean TTX concentrations.
A method using reverse-phase ultra-high-performance liquid chromatography coupled with tandem mass spectrometry is described for eight classes of therapeutants that are used in marine aquaculture products. Validation studies to evaluate recovery, precision, method detection limits, and measurement uncertainty were performed at three levels, using three representative matrices [salmon (fatty fish), tilapia (lean fish), and shrimp (crustaceans)] to assess the method performance for use as a screening or determinative (quantitative and confirmatory) method. A total of 16 sulfonamides (plus 2 potentiators), 2 tetracyclines, 11 (fluoro)quinolones, 7 nitroimidazoles, 3 amphenicols, 5 steroids, and 3 stilbenes met the quantitative criteria for method validation.
View Article and Find Full Text PDFParalytic shellfish toxins (PSTs) are potent neurotoxins produced by marine dinoflagellates that are responsible for paralytic shellfish poisoning (PSP) in humans. This work highlights our ongoing efforts to develop quantitative methods for PSTs using hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). Compared with the commonly used method of liquid chromatography with post-column oxidation and fluorescence detection (LC-ox-FLD), HILIC-MS/MS has the potential of being more robust, sensitive and straightforward to operate, and provides unequivocal confirmation of toxin identity.
View Article and Find Full Text PDFDue to potential use in aquacultured fish products, the Canadian Food Inspection Agency has identified residue testing for steroids as a priority. These compounds are used in aquaculture primarily to direct sexual differentiation with both androgens and estrogens applied depending on the desired outcome. Published research is lacking with respect to steroid residue testing in fish; however, recent studies in other matrixes provided transferable cleanup techniques.
View Article and Find Full Text PDFSaxitoxin and its derivatives, the paralytic shellfish toxins (PSTs), are known to be toxic to humans, and maximum permitted levels in seafood have been established by regulatory authorities in many countries. Until recently, the mouse bioassay was the reference method for determining the levels of these toxins in seafood, but this has now been superseded by chemical methods of analysis. The latter methods are able to determine the levels of many PSTs in shellfish, but for risk assessment an estimate of the relative toxicities of the individual components of the PST mixture is required.
View Article and Find Full Text PDFSixteen laboratories participated in a collaborative study to evaluate method performance parameters of a liquid chromatographic method of analysis for paralytic shellfish toxins (PST) in blue mussels (Mytilus edulis), soft shell clams (Mya arenaria), sea scallops (Placopectin magellanicus), and American oysters (Crassostrea virginicus). The specific analogs tested included saxitoxin, neosaxitoxin, gonyautoxins-1 to -5, decarbamoyl-gonyautoxins-2 and -3, decarbamoyl-saxitoxin, and N-sulfocarbamoyl-gonyautoxin-2 and -3. This instrumental technique has been developed as a replacement for the current AOAC biological method (AOAC Official Method 959.
View Article and Find Full Text PDFA refined version of the pre-column oxidation liquid chromatography with fluorescence detection (ox-LC-FLD) official method AOAC 2005.06 was developed in the UK and validated for the determination of paralytic shellfish poisoning toxins in UK shellfish. Analysis was undertaken here for the comparison of PSP toxicities determined using the LC method for a range of UK bivalve shellfish species against the official European reference method, the PSP mouse bioassay (MBA, AOAC 959.
View Article and Find Full Text PDFA single-laboratory validation study was conducted for the LC post-column oxidation analysis of paralytic shellfish toxins (PST): saxitoxin (STX); neosaxitoxin (NEO); gonyautoxins (GTX) 1-5; decarbamoyl gonyautoxins (dcGTX) 2 and 3; decarbamoyl saxitoxin (dcSTX); and N-sulfocarbamoyl-gonyautoxin-2 and 3 (C1 and C2) in mussels (Mytilus edulis), soft shell clams (Mya arenaria), scallops (Placopectin magellanicus), and oysters (Crassostrea virginicus). The instrumental technique was developed for the analysis of PST in shellfish as an alternative to the precolumn oxidation method, AOAC Official Method 2005.06, and a replacement for the current AOAC biological method 959.
View Article and Find Full Text PDF