Publications by authors named "Ryan Gelfand"

We demonstrate a simple three-step gold thin-film sample preparation process to enhance the morphology and lithographic precision using helium ion based direct-writing. The procedure includes metal deposition, heat treatment and template stripping, which produce smooth monocrystalline gold grains with sizes up to 500 nm and an average surface roughness of 0.267 nm.

View Article and Find Full Text PDF
Article Synopsis
  • - The field of nanotechnology focuses on creating tiny structures and devices that have unique properties and uses, significantly impacting various scientific disciplines globally.
  • - NanoFlorida was established to foster collaboration and networking among nanoscientists, enhancing partnerships between academia and industry while highlighting the work of students in the field.
  • - The 2019 NanoFlorida International Conference aimed to broaden participation and showcase advancements in nanotechnology, particularly in areas like biomedical devices, drug discovery, and environmental applications, while addressing future research challenges.
View Article and Find Full Text PDF

This paper presents simulation results for double nanohole and inverted bowtie nanoapertures optimized to resonate in the short-wave infrared regime (1050 nm and 1550 nm). These geometries have shown great promise for trapping nanoparticles with applications in optical engineering, physics, and biology. Using a finite element analysis tool, we found that the outline length for inverted bowtie nanoapertures in a 100 nm thick gold film with a 20 nm gap dimension having an optimized transmission resonance for 1050 nm and 1550 nm optical wavelengths is 106.

View Article and Find Full Text PDF

Recent advances in single-molecule techniques have led to new discoveries in analytical chemistry, biophysics, and medicine. Understanding the structure and behavior of single biomolecules provides a wealth of information compared to studying large ensembles. However, developing single-molecule techniques is challenging and requires advances in optics, engineering, biology, and chemistry.

View Article and Find Full Text PDF

Remarkable breakthroughs have established the functionality of graphene and carbon nanotube transistors as replacements to silicon in conventional computing structures, and numerous spintronic logic gates have been presented. However, an efficient cascaded logic structure that exploits electron spin has not yet been demonstrated. In this work, we introduce and analyse a cascaded spintronic computing system composed solely of low-dimensional carbon materials.

View Article and Find Full Text PDF

Nanoaperture optical tweezers are emerging as useful label-free, free-solution tools for the detection and identification of biological molecules and their interactions at the single molecule level. Nanoaperture optical tweezers provide a low-cost, scalable, straight-forward, high-speed and highly sensitive (SNR ∼ 33) platform to observe real-time dynamics and to quantify binding kinetics of protein-small molecule interactions without the need to use tethers or labeling. Such nanoaperture-based optical tweezers, which are 1000 times more efficient than conventional optical tweezers, have been used to trap and isolate single DNA molecules and to study proteins like p53, which has been claimed to be in mutant form for 75% of human cancers.

View Article and Find Full Text PDF

We demonstrate the trapping of single 20 and 40 nm polystyrene spheres at the cleaved end of a fiber optic with a double nanohole aperture in gold and without any microscope optics. An optical transmission increase of 15% indicates a trapping event for the 40 nm particle, and the jump is 2% for the 20 nm particle. This modular technique can be used to replace those used with current optical trapping setups that require complicated free space optics and frequent calibration, with one that is modular and requires no free space optics.

View Article and Find Full Text PDF

Double nanohole (DNH) laser tweezers can optically trap and manipulate objects such as proteins, nanospheres, and other nanoparticles; however, precise fabrication of those DNHs has been expensive with low throughput. In this work, template stripping was used to pattern DNHs with gaps as small as 7 nm, in optically thick Au films. These DNHs were used to trap streptavidin as proof of operation.

View Article and Find Full Text PDF

Recently, self-assembled monolayers (SAMs) have been used for plasmonic rulers to measure the nonlocal influence on the Au nanoparticle - metal film resonance wavelength shift and probe the ultimate field enhancement. Here we examine the influence of surface roughness on this plasmonic ruler in the nonlocal regime by comparing plasmonic resonance shifts for as-deposited and for ultra-flat Au films. It is shown that the resonance shift is larger for ultra-flat films, suggesting that there is not the saturation from nonlocal effects previously reported for the spacer range from 0.

View Article and Find Full Text PDF

We report a type of infrared switchable plasmonic quantum cascade laser, in which far field light in the midwave infrared (MWIR, 6.1 μm) is modulated by a near field interaction of light in the telecommunications wavelength (1.55 μm).

View Article and Find Full Text PDF

We present spatial mapping of optical force generated near the hot spot of a metal-dielectric-metal bowtie nanoantenna at a wavelength of 1550 nm. Maxwell's stress tensor method has been used to simulate the optical force and it agrees well with the experimental data. This method could potentially produce field intensity and optical force mapping simultaneously with a high spatial resolution.

View Article and Find Full Text PDF

Optical nanoantennas are capable of enhancing the near-field intensity and confining optical energy within a small spot size. We report a novel metal-dielectric-metal coupled-nanorods antenna integrated on the facet of a quantum-cascade laser. Finite-difference time-domain simulations showed that, for dielectric thicknesses in the range from 10 to 30 nm, peak optical intensity at the top of the antenna gap is 4000 times greater than the incident field intensity.

View Article and Find Full Text PDF

We report on the signal-to-noise performance of a nanoinjection imager, which is based on a short-wave IR InGaAs/GaAsSb/InP detector with an internal avalanche-free amplification mechanism. Test pixels in the imager show responsivity values reaching 250 A/W at 1550 nm, -75 degrees C, and 1.5V due to an internal charge amplification mechanism in the detector.

View Article and Find Full Text PDF

We present a new structure that combines a metal-dielectric-metal sandwich with a periodic structure to form a plasmon polariton photonic crystal. Three-dimensional finite-difference time-domain simulations show a clear bandgap in the terahertz regime. We exploited this property by adding a defect to the crystal, which produces a cavity with a quality factor of 23.

View Article and Find Full Text PDF