Publications by authors named "Ryan G McAllister"

The ability of microbes to attach to biological and inert substrates is a necessary prerequisite for colonization of new habitats. In contrast to well-characterized mechanisms that rely on specific or nonspecific chemical interactions between microbe and substrate, we describe here an effective hydrodynamic mechanism of attachment that relies on fluid flow generated by the microbe. The microbe , a flagellated protozoan parasite, naturally attaches to the microvilliated surface of the small intestine but is also capable of attaching indiscriminately to a wide range of natural and artificial substrates.

View Article and Find Full Text PDF

New insight into the biomechanics of cancer cell motility in 3D extracellular matrix (ECM) environments would significantly enhance our understanding of aggressive cancers and help identify new targets for intervention. While several methods for measuring the forces involved in cell-matrix interactions have been developed, previous to this study none have been able to measure forces in a fibrillar environment. We have developed a novel assay for simultaneously measuring cell mechanotransduction and motility in 3D fibrillar environments.

View Article and Find Full Text PDF

During development a variety of cell types are guided by molecular concentration gradients to form tissues and organ systems. In the nervous system, the migration and neuronal pathfinding that occurs during development is organized and driven by "guidance cues." Some of these cues are substrate bound or nondiffusible, while many are diffusible and form gradients within the developing embryo to guide neurons and neurites to their appropriate destination.

View Article and Find Full Text PDF

We demonstrate effective guidance of neurites extending from PC12 cells in a three-dimensional collagen matrix using a focused infrared laser. Processes can be redirected in an arbitrarily chosen direction in the imaging plane in approximately 30 min with an 80% success rate. In addition, the application of the laser beam significantly increases the rate of neurite outgrowth.

View Article and Find Full Text PDF

We describe the principles, design, and systems integration of a flexible, high-speed, high-sensitivity, high-resolution confocal spinning disk microscopy (SDCM) system. We present several artifacts unique to high-speed SDCM along with techniques to minimize them. We show example experimental results from a specific implementation capable of generating 3-D image stacks containing 30 2-D slices at 30 stacks per second.

View Article and Find Full Text PDF

Axonal chemotaxis is believed to be important in wiring up the developing and regenerating nervous system, but little is known about how axons actually respond to molecular gradients. We report a new quantitative assay that allows the long-term response of axons to gradients of known and controllable shape to be examined in a three-dimensional gel. Using this assay, we show that axons may be nature's most-sensitive gradient detectors, but this sensitivity exists only within a narrow range of ligand concentrations.

View Article and Find Full Text PDF