Background: Motion of lung tumors during radiotherapy leads to decreased accuracy of the delivered dose distribution. This is especially true for proton radiotherapy due to the finite range of the proton beam. Methods for mitigating motion rely on knowing the position of the tumor during treatment.
View Article and Find Full Text PDFProton radiography is a promising development in proton therapy, and researchers are currently exploring optimal detector materials to construct proton radiography detector arrays. High-density glass scintillators may improve integrating-mode proton radiography detectors by increasing spatial resolution and decreasing detector thickness. We evaluated several new scintillators, activated with europium or terbium, with proton response measurements and Monte Carlo simulations, characterizing relative luminosity, ionization quenching, and proton radiograph spatial resolution.
View Article and Find Full Text PDFBackground: Particle imaging can increase precision in proton and ion therapy. Interactions with nuclei in the imaged object increase image noise and reduce image quality, especially for multinucleon ions that can fragment, such as helium.
Purpose: This work proposes a particle imaging filter, referred to as the Prior Filter, based on using prior information in the form of an estimated relative stopping power (RSP) map and the principles of electromagnetic interaction, to identify particles that have undergone nuclear interaction.