Publications by authors named "Ryan E Warburton"

A remote-sensing system that can determine the position of hidden objects has applications in many critical real-life scenarios, such as search and rescue missions and safe autonomous driving. Previous work has shown the ability to range and image objects hidden from the direct line of sight, employing advanced optical imaging technologies aimed at small objects at short range. In this work we demonstrate a long-range tracking system based on single laser illumination and single-pixel single-photon detection.

View Article and Find Full Text PDF

A depth imaging system, based on the time-of-flight approach and the time-correlated single-photon counting (TCSPC) technique, was investigated for use in highly scattering underwater environments. The system comprised a pulsed supercontinuum laser source, a monostatic scanning transceiver, with a silicon single-photon avalanche diode (SPAD) used for detection of the returned optical signal. Depth images were acquired in the laboratory at stand-off distances of up to 8 attenuation lengths, using per-pixel acquisition times in the range 0.

View Article and Find Full Text PDF

Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology process.

View Article and Find Full Text PDF

A 1 x 8 fiber array is used as the front-end of a receiver system. Each channel has a different length of fiber, resulting in each channel signal arriving at the detector at a pre-determined interval relative to a constant repetitive frequency signal. We demonstrate that these eight channels can be efficiently coupled to an individual single-photon detector such that the arrival-time of a photon in each is distinguishable from the next.

View Article and Find Full Text PDF

We demonstrate subcentimeter depth profiling at a stand off distance of 330 m using a time-of-flight approach based on time-correlated single-photon counting. For the first time to our knowledge, the photon-counting time-of-flight technique was demonstrated at a wavelength of 1550 nm using a superconducting nanowire single-photon detector. The performance achieved suggests that a system using superconducting detectors has the potential for low-light-level and eye-safe operation.

View Article and Find Full Text PDF

We describe improvements to a time-of-flight sensor utilising the time-correlated single-photon counting technique employing a commercially-available silicon-based photon-counting module. By making modifications to the single-photon detection circuitry and the data analysis techniques, we experimentally demonstrate improved resolution between multiple scattering surfaces with a minimum resolvable separation of 1.7 cm at ranges in excess of several hundred metres.

View Article and Find Full Text PDF