Publications by authors named "Ryan Debuque"

The lack of scar-free healing and regeneration in many adult human tissues imposes severe limitations on the recovery of function after injury. In stark contrast, salamanders can functionally repair a range of clinically relevant tissues throughout adult life. The impressive ability to regenerate whole limbs after amputation, or regenerate following cardiac injury, is critically dependent on the recruitment of (myeloid) macrophage white blood cells to the site of injury.

View Article and Find Full Text PDF

Background: Efficient wound healing or pathogen clearance both rely on balanced inflammatory responses. Inflammation is essential for effective innate immune-cell recruitment; however, excessive inflammation will result in local tissue destruction, pathogen egress, and ineffective pathogen clearance. Sterile and nonsterile inflammation operate with competing functional priorities but share common receptors and overlapping signal transduction pathways.

View Article and Find Full Text PDF

Testing angiogenic potential and function of cells in culture is important for the understanding of the mechanisms that can modulate angiogenesis, especially when discovering novel anti- or pro-angiogenic therapeutics. Commonly used angiogenic assays include tube formation, proliferation, migration, and wound healing, and although well-characterized, it is important that methodology is standardized and reproducible. Human endothelial progenitor cells (EPCs) are critical for post-natal vascular homeostasis and can be isolated from human peripheral blood.

View Article and Find Full Text PDF

Rationale: Accurate knowledge of the cellular composition of the heart is essential to fully understand the changes that occur during pathogenesis and to devise strategies for tissue engineering and regeneration.

Objective: To examine the relative frequency of cardiac endothelial cells, hematopoietic-derived cells, and fibroblasts in the mouse and human heart.

Methods And Results: Using a combination of genetic tools and cellular markers, we examined the occurrence of the most prominent cell types in the adult mouse heart.

View Article and Find Full Text PDF

The vertebrate immune system comprises both adaptive and innate immune cells with distinct functions during the resolution of inflammation and wound healing after tissue injury. Recent evidence implicates a requirement for innate immune cells from the myeloid lineage during the early stages of limb regeneration in the Mexican axolotl. Understanding the functions of innate and adaptive immune cells in the axolotl has been hampered by a lack of approaches to isolate and analyze these cells.

View Article and Find Full Text PDF

Cardiac tissue macrophages (cTMs) are abundant in the murine heart but the extent to which the cTM phenotype changes with age is unknown. This study characterizes aging-dependent phenotypic changes in cTM subsets. Using theCx3cr1(GFP/+) mouse reporter line where GFP marks cTMs, and the tissue macrophage marker Mrc1, we show that two major cardiac tissue macrophage subsets, Mrc1-GFP(hi) and Mrc1+GFP(hi) cTMs, are present in the young (<10 week old) mouse heart, and a third subset, Mrc1+GFP(lo), comprises ~50% of total Mrc1+ cTMs from 30 weeks of age.

View Article and Find Full Text PDF