Publications by authors named "Ryan D White"

State-level physician associate/assistant (PA) practice regulations have evolved since the profession's inception. The conditions that influence states' adoption of PA regulatory reforms are not fully understood. As some states begin to adopt components of optimal team practice, PAs in other states continue to face significant legal and regulatory practice restrictions.

View Article and Find Full Text PDF

Introduction: Inadequate clinical training site availability may inhibit physician assistant/associate (PA), advanced practice nursing (APN), and physician workforce growth. Educational institutions increasingly incentivize clinical training sites with financial compensation, with potential implications for educational costs and enrollment. This study investigated compensation trends among PA programs.

View Article and Find Full Text PDF

Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors for a wide range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed "DrugMap," an atlas of cysteine ligandability compiled across 416 cancer cell lines.

View Article and Find Full Text PDF

High labor demand for physician assistants/associates (PA) has led to substantial PA workforce and wage growth. During this growth period, states have adopted reforms to reduce PA scope of practice restrictions and reports of significant gender and race wage disparities have emerged. This study examined data from the American Community Survey to investigate the influence of demographic characteristics, human capital, and scope of practice reforms on PA wages from 2008 to 2017.

View Article and Find Full Text PDF

The retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt), which is a promising therapeutic target for immune diseases, is a major transcription factor of genes related to psoriasis pathogenesis, such as interleukin (IL)-17A, IL-22, and IL-23R. Inspired by the co-crystal structure of RORγt, a 6-oxo-4-phenyl-hexanoic acid derivative 6a was designed, synthesized, and identified as a ligand of RORγt. The structure-activity relationship (SAR) studies in 6a, which focus on the improvement of its membrane permeability profile by introducing chlorine atoms, led to finding 12a, which has a potent RORγt inhibitory activity and a favorable pharmacokinetic profile.

View Article and Find Full Text PDF

The retinoic acid receptor-related orphan nuclear receptor γt (RORγt), a promising therapeutic target, is a major transcription factor of genes related to psoriasis pathogenesis such as interleukin (IL)-17A, IL-22, and IL-23R. On the basis of the X-ray cocrystal structure of RORγt with , an analogue of the known piperazine RORγt inverse agonist , triazolopyridine derivatives of were designed and synthesized, and analogue was found to be a potent RORγt inverse agonist. Structure-activity relationship studies on , focusing on the treatment of its metabolically unstable cyclopentyl ring and the central piperazine core, led to a novel analogue, namely, 6-methyl--(7-methyl-8-(((2,4)-2-methyl-1-(4,4,4-trifluoro-3-(trifluoromethyl)butanoyl)piperidin-4-yl)oxy)[1,2,4]triazolo[1,5-]pyridin-6-yl)nicotinamide (), which exhibited strong RORγt inhibitory activity and a favorable pharmacokinetic profile.

View Article and Find Full Text PDF

The detection of atrial fibrillation (AF) is important for stroke prevention in patients with AF. This paper aimed to investigate the current landscape of smartphone-based arrhythmia detection and monitoring. The current technology can be divided into smartphone-based photoplethysmography (PPG) and smartphone-based single-lead electrocardiograms (ECGs).

View Article and Find Full Text PDF

As part of an ongoing effort at Amgen to develop a disease-modifying therapy for Alzheimer's disease, we have previously used the aminooxazoline xanthene (AOX) scaffold to generate potent and orally efficacious BACE1 inhibitors. While AOX-BACE1 inhibitors demonstrated acceptable cardiovascular safety margins, a retinal pathological finding in rat toxicological studies demanded further investigation. It has been widely postulated that such retinal toxicity might be related to off-target inhibition of Cathepsin D (CatD), a closely related aspartyl protease.

View Article and Find Full Text PDF

Pancreatic amyloid formation by islet amyloid polypeptide (IAPP) is a hallmark pathological feature of type 2 diabetes. IAPP is stored in the secretory granules of pancreatic beta-cells and co-secreted with insulin to maintain glucose homeostasis. IAPP is innocuous under homeostatic conditions but imbalances in production or processing of IAPP may result in homodimer formation leading to the rapid production of cytotoxic oligomers and amyloid fibrils.

View Article and Find Full Text PDF

Clinical trials have reported a low time in therapeutic range (TTR) in patients with atrial fibrillation treated with both warfarin andamiodarone. These trials included centers and countries with both high and low TTRs. What is the impact of amiodarone on the TTR in a single, high-quality anticoagulation clinic? TTR was assessed in amiodarone and nonamiodarone-treated patients from a University anticoagulation clinic.

View Article and Find Full Text PDF

BACE1 inhibition to prevent Aβ peptide formation is considered to be a potential route to a disease-modifying treatment for Alzheimer's disease. Previous efforts in our laboratory using a combined structure- and property-based approach have resulted in the identification of aminooxazoline xanthenes as potent BACE1 inhibitors. Herein, we report further optimization leading to the discovery of inhibitor 15 as an orally available and highly efficacious BACE1 inhibitor that robustly reduces CSF and brain Aβ levels in both rats and nonhuman primates.

View Article and Find Full Text PDF

The β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is one of the most hotly pursued targets for the treatment of Alzheimer's disease. We used a structure- and property-based drug design approach to identify 2-aminooxazoline 3-azaxanthenes as potent BACE1 inhibitors which significantly reduced CSF and brain Aβ levels in a rat pharmacodynamic model. Compared to the initial lead 2, compound 28 exhibited reduced potential for QTc prolongation in a non-human primate cardiovascular safety model.

View Article and Find Full Text PDF

The optimization of a series of aminooxazoline xanthene inhibitors of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is described. An early lead compound showed robust Aβ lowering activity in a rat pharmacodynamic model, but advancement was precluded by a low therapeutic window to QTc prolongation in cardiovascular models consistent with in vitro activity on the hERG ion channel. While the introduction of polar groups was effective in reducing hERG binding affinity, this came at the expense of higher than desired Pgp-mediated efflux.

View Article and Find Full Text PDF

We have previously shown that the aminooxazoline xanthene scaffold can generate potent and orally efficacious BACE1 inhibitors although certain of these compounds exhibited potential hERG liabilities. In this article, we describe 4-aza substitution on the xanthene core as a means to increase BACE1 potency while reducing hERG binding affinity. Further optimization of the P3 and P2' side chains resulted in the identification of 42 (AMG-8718), a compound with a balanced profile of BACE1 potency, hERG binding affinity, and Pgp recognition.

View Article and Find Full Text PDF

Inflammation is considered to be a major initiator to angioplasty-induced vascular restenosis. Proinflammatory cytokines stimulate vascular smooth muscle cell (VSMC) migration and proliferation leading to neointimal hyperplasia. It has been reported that chronic caffeine use suppresses the production of proinflammatory cytokine TNF-α (tumor necrosis factor Alpha) and alters adenosine receptor expression in human neutrophils, indicating that caffeine may attenuate vascular injury-induced inflammation and subsequent neointimal hyperplasia.

View Article and Find Full Text PDF

A series of alpha-amidosulfones were found to be potent and selective agonists of CB(2). The discovery, synthesis, and structure-activity relationships of this series of agonists are reported. In addition, the pharmacokinetic properties of the most promising compounds are profiled.

View Article and Find Full Text PDF

The CB2 receptor is an attractive therapeutic target for analgesic and anti-inflammatory agents. Herein we describe the discovery of a novel class of oxadiazole derivatives from which potent and selective CB2 agonist leads were developed. Initial hit 7 was identified from a cannabinoid target-biased library generated by virtual screening of sample collections using a pharmacophore model in combination with a series of physicochemical filters.

View Article and Find Full Text PDF

Structural modifications to the central portion of the N-arylamide oxadiazole scaffold led to the identification of N-arylpiperidine oxadiazoles as conformationally constrained analogs that offered improved stability and comparable potency and selectivity. The simple, modular scaffold allowed for the use of expeditious and divergent synthetic routes, which provided two-directional SAR in parallel. Several potent and selective agonists from this novel ligand class are described.

View Article and Find Full Text PDF

Inhibition of c-Kit has the potential to treat mast cell associated fibrotic diseases. We report the discovery of several aminoquinazoline pyridones that are potent inhibitors of c-Kit with greater than 200-fold selectivity against KDR, p38, Lck, and Src. In vivo efficacy of pyridone 16 by dose-dependent inhibition of histamine release was demonstrated in a rodent pharmacodynamic model of mast cell activation.

View Article and Find Full Text PDF

A series of naphthyl-based compounds were synthesized as potential inhibitors of vascular endothelial growth factor (VEGF) receptors. Investigations of structure-activity relationships led to the identification of a series of naphthamides that are potent inhibitors of the VEGF receptor tyrosine kinase family. Numerous analogues demonstrated low nanomolar inhibition of VEGF-dependent human umbilical vein endothelial cell (HUVEC) proliferation, and of these several compounds possessed favorable pharmacokinetic (PK) profiles.

View Article and Find Full Text PDF

4-Amino-5,6-biaryl-furo[2,3-d]pyrimidines were identified as potent non-selective inhibitors of Lck. A novel, divergent, and practical synthetic route was developed to access derivatives from bifunctional intermediates. Lead optimization was guided by X-ray crystallographic data, and preliminary SAR led to the identification of compounds with improved cellular potency and selectivity.

View Article and Find Full Text PDF

2,3-Diarylfuro[2,3-b]pyridine-4-amines are a novel class of potent and selective inhibitors of Lck. The discovery, synthesis, and structure activity relationships of this series of inhibitors are reported. The most promising compounds were also profiled to deduce their pharmacokinetic properties.

View Article and Find Full Text PDF

The lymphocyte-specific kinase (Lck) is a cytoplasmic tyrosine kinase of the Src family expressed in T cells and natural killer (NK) cells. Genetic evidence in both mice and humans demonstrates that Lck kinase activity is critical for signaling mediated by the T cell receptor (TCR), which leads to normal T cell development and activation. Selective inhibition of Lck is expected to offer a new therapy for the treatment of T-cell-mediated autoimmune and inflammatory disease.

View Article and Find Full Text PDF

The lymphocyte-specific kinase (Lck) is a cytoplasmic tyrosine kinase of the Src family expressed in T cells and NK cells. Genetic evidence in both mice and humans demonstrates that Lck kinase activity is critical for signaling mediated by the T cell receptor (TCR), which leads to normal T cell development and activation. A small molecule inhibitor of Lck is expected to be useful in the treatment of T cell-mediated autoimmune and inflammatory disorders and/or organ transplant rejection.

View Article and Find Full Text PDF