is an opportunistic protozoa, which exists widely in nature and is mainly distributed in soil and water. usually exists in two forms, trophozoites and cysts. The trophozoite stage is one of growth and reproduction while the cyst stage is characterized by cellular quiescence, commonly resulting in human infection, and the lack of effective monotherapy after initial infection leads to chronic disease.
View Article and Find Full Text PDFDespite recent advances in single-molecule and structural analysis of condensin activity in vitro, mechanisms of functional condensin loading and loop extrusion that lead to specific chromosomal organization remain unclear. In Saccharomyces cerevisiae, the most prominent condensin loading site is the rDNA locus on chromosome XII, but its repetitiveness deters rigorous analysis of individual genes. An equally prominent non-rDNA condensin site is located on chromosome III (chrIII).
View Article and Find Full Text PDFCaloric restriction (CR) improves health span and life span of organisms ranging from yeast to mammals. Understanding the mechanisms involved will uncover future interventions for aging-associated diseases. In budding yeast, Saccharomyces cerevisiae, CR is commonly defined by reduced glucose in the growth medium, which extends both replicative and chronological life span (CLS).
View Article and Find Full Text PDFThe NAD+-dependent histone deacetylase Sir2 was originally identified in Saccharomyces cerevisiae as a silencing factor for HML and HMR, the heterochromatic cassettes utilized as donor templates during mating-type switching. MATa cells preferentially switch to MATα using HML as the donor, which is driven by an adjacent cis-acting element called the recombination enhancer (RE). In this study we demonstrate that Sir2 and the condensin complex are recruited to the RE exclusively in MATa cells, specifically to the promoter of a small gene within the right half of the RE known as RDT1.
View Article and Find Full Text PDFSir2 is a highly conserved NAD-dependent histone deacetylase that functions in heterochromatin formation and promotes replicative life span (RLS) in the budding yeast, Within the yeast rDNA locus, Sir2 is required for efficient cohesin recruitment and maintaining the stability of the tandem array. In addition to the previously reported depletion of Sir2 in replicatively aged cells, we discovered that subunits of the Sir2-containing complexes silent information regulator (SIR) and regulator of nucleolar silencing and telophase (RENT) were depleted. Several other rDNA structural protein complexes also exhibited age-related depletion, most notably the cohesin complex.
View Article and Find Full Text PDFChronologically aging yeast cells are prone to adaptive regrowth, whereby mutants with a survival advantage spontaneously appear and re-enter the cell cycle in stationary phase cultures. Adaptive regrowth is especially noticeable with short-lived strains, including those defective for SNF1, the homolog of mammalian AMP-activated protein kinase (AMPK). SNF1 becomes active in response to multiple environmental stresses that occur in chronologically aging cells, including glucose depletion and oxidative stress.
View Article and Find Full Text PDFRNA polymerase II (Pol II)-transcribed genes embedded within the yeast rDNA locus are repressed through a Sir2-dependent process called 'rDNA silencing'. Sir2 is recruited to the rDNA promoter through interactions with RNA polymerase I (Pol I), and to a pair of DNA replication fork block sites (Ter1 and Ter2) through interaction with Fob1. We utilized a reporter gene (mURA3) integrated adjacent to the leftmost rDNA gene to investigate localized Pol I and Fob1 functions in silencing.
View Article and Find Full Text PDF