Publications by authors named "Ryan C Williamson"

Article Synopsis
  • This study explores the use of radiomics features from optical coherence tomography (OCT) images to predict how well patients with pigment epithelial detachment (PED) associated with neovascular age-related macular degeneration respond to anti-VEGF therapy.
  • It involved 39 eyes of patients, evaluated through OCT images taken at baseline, 3 months, and 6 months, with results indicating a classification accuracy of 64% in distinguishing between responding and recurring cases.
  • The findings suggest that analyzing these radiomics features could enhance personalized treatment plans by predicting individual responses to therapy.
View Article and Find Full Text PDF

An animal's decision depends not only on incoming sensory evidence but also on its fluctuating internal state. This state embodies multiple cognitive factors, such as arousal and fatigue, but it is unclear how these factors influence the neural processes that encode sensory stimuli and form a decision. We discovered that, unprompted by task conditions, animals slowly shifted their likelihood of detecting stimulus changes over the timescale of tens of minutes.

View Article and Find Full Text PDF

Separating neural signals from noise can improve brain-computer interface performance and stability. However, most algorithms for separating neural action potentials from noise are not suitable for use in real time and have shown mixed effects on decoding performance. With the goal of removing noise that impedes online decoding, we sought to automate the intuition of human spike-sorters to operate in real time with an easily tunable parameter governing the stringency with which spike waveforms are classified.

View Article and Find Full Text PDF

The hippocampus is thought to encode information by altering synaptic strength via synaptic plasticity. Some forms of synaptic plasticity are induced by lipid-based endocannabinoid signaling molecules that act on cannabinoid receptors (CB1). Endocannabinoids modulate synaptic plasticity of hippocampal pyramidal cells and stratum radiatum interneurons; however, the role of endocannabinoids in mediating synaptic plasticity of stratum oriens interneurons is unclear.

View Article and Find Full Text PDF

A long-standing goal in neuroscience has been to bring together neuronal recordings and neural network modeling to understand brain function. Neuronal recordings can inform the development of network models, and network models can in turn provide predictions for subsequent experiments. Traditionally, neuronal recordings and network models have been related using single-neuron and pairwise spike train statistics.

View Article and Find Full Text PDF

Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition.

View Article and Find Full Text PDF

Recent studies have applied dimensionality reduction methods to understand how the multi-dimensional structure of neural population activity gives rise to brain function. It is unclear, however, how the results obtained from dimensionality reduction generalize to recordings with larger numbers of neurons and trials or how these results relate to the underlying network structure. We address these questions by applying factor analysis to recordings in the visual cortex of non-human primates and to spiking network models that self-generate irregular activity through a balance of excitation and inhibition.

View Article and Find Full Text PDF