Publications by authors named "Ryan C Hayward"

In geometrically frustrated assemblies local intersubunit misfits propagate to intra-assembly strain gradients, giving rise to anomalous self-limiting assembly thermodynamics. Here we use theory and coarse-grained simulation to study a recently developed class of "curvamer" particles, flexible shell-like particles that exhibit self-limiting assembly due to the build up of curvature deformation in cohesive stacks. To address a generic, yet poorly understood aspect of frustrated assembly, we introduce a model of curvamer assembly that incorporates both intraparticle shape deformation as well as compliance of interparticle cohesive gaps, an effect we can attribute to a finite range of attraction between particles.

View Article and Find Full Text PDF

Porous materials have attracted considerable attention due to their versatile applications, especially in water purification. Interconnected nanoporous structures are distinguished by their high degree of porosity and resistance to clogging, as well as their insensitivity to nanostructural orientation. Previous works on randomly linked copolymer systems have shown that they can effectively produce disordered cocontinuous nanostructures, which upon removal of one component yield interconnected nanoporous materials.

View Article and Find Full Text PDF

We demonstrate a system for performing logical operations (OR, AND, and NOT gates) at the air-water interface based on Marangoni optical trapping and repulsion between photothermal particles. We identify a critical separation distance at which the trapped particle assemblies become unstable, providing insight into the potential for scaling to larger arrays of logic elements.

View Article and Find Full Text PDF
Article Synopsis
  • Pressure-sensitive adhesives (PSAs) are commonly used in various industries, but achieving desired anisotropic adhesion usually involves complex and costly microstructures.
  • Aligned liquid crystalline elastomers (LCEs) are explored as a potential solution, offering directional properties such as variable stiffness and deformation when under load.
  • By adjusting the cross-link content in LCEs, researchers found a significant difference in peel strength based on alignment direction, indicating potential for refined adhesion applications with patterned orientations.
View Article and Find Full Text PDF

Cocontinuous polymeric nanostructures have drawn considerable attention due to their ability to combine distinct, percolation-dependent properties of two different polymer domains. Randomly end-linked copolymer networks (RECNs) have previously been shown to support the formation of disordered cocontinuous nanostructures across wide composition windows in a robust way. However, achieving highly efficient linking of telechelic polymers with excellent end-group fidelity often requires complex synthetic routes.

View Article and Find Full Text PDF

Photomechanical crystals composed of three-dimensionally ordered and densely packed photochromes hold promise for high-performance photochemical actuators. However, bulk crystals with high structural ordering are severely limited in their flexibility, resulting in poor processibility and a tendency to fragment upon light exposure, while previous nano- or microcrystalline composites have lacked global alignment. Here we demonstrate a photon-fuelled macroscopic actuator consisting of diarylethene microcrystals in a polyethylene terephthalate host matrix.

View Article and Find Full Text PDF

Electroadhesion is the modulation of adhesive forces through electrostatic interactions and has potential applications in a number of next-generation technologies. Recent efforts have focused on using electroadhesion in soft robotics, haptics, and biointerfaces that often involve compliant materials and nonplanar geometries. Current models for electroadhesion provide limited insight on other contributions that are known to influence adhesion performance, such as geometry and material properties.

View Article and Find Full Text PDF

In this work, we study the influence of surface tension on light-induced wrinkling of hydrogel disks containing patterned regions of photothermally-active gold nanoparticles at the air-water interface. The disks, which are initially radially stretched by the air-water surface tension, undergo wrinkling under illumination through a radially nonuniform photothermal deswelling. By tuning the surface tension of the surrounding air-water interface through variations in concentration of a poly(vinyl alcohol) surfactant, we observe a critical threshold for wrinkling, followed by a monotonic decrease in wrinkle number with decreasing surface tension.

View Article and Find Full Text PDF

Mechanical computing has seen resurgent interest recently owing to the potential to embed sensing and computation into new classes of programmable metamaterials. To realize this, however, one must push signals from one part of a device to another and do so in a way that can be reset robustly. We investigate the propagation of signals in a bistable mechanical cascade uphill in energy.

View Article and Find Full Text PDF

Aligned liquid crystal polymers are materials of interest for electronic, optic, biological and soft robotic applications. The manufacturing and processing of these materials have been widely explored with mechanical alignment establishing itself as a preferred method due to its ease of use and widespread applicability. However, the fundamental chemistry behind the required two-step polymerization for mechanical alignment has limitations in both fabrication and substrate compatibility.

View Article and Find Full Text PDF

Soft materials interfaces can develop complex morphologies, such as cavities or finger-like features, during separation as a result of a mechanical instability. While the onset and growth of these instabilities have been investigated previously for interfaces between rigid and soft materials, no existing predictive model provides insight for controlling the separation morphology associated with these instabilities when both "sides" of the interface are soft. Here, we expand previous models to account for the geometry and materials properties of two soft materials that form an interface.

View Article and Find Full Text PDF

Self-folding origami, structures that are engineered flat to fold into targeted, three-dimensional shapes, have many potential engineering applications. Though significant effort in recent years has been devoted to designing fold patterns that can achieve a variety of target shapes, recent work has also made clear that many origami structures exhibit multiple folding pathways, with a proliferation of geometric folding pathways as the origami structure becomes complex. The competition between these pathways can lead to structures that are programmed for one shape, yet fold incorrectly.

View Article and Find Full Text PDF

Formation of desired three-dimensional (3D) shapes from flat thin sheets with programmed non-uniform deformation profiles is an effective strategy to create functional 3D structures. Liquid crystal elastomers (LCEs) are of particular use in programmable shape morphing due to their ability to undergo large, reversible, and anisotropic deformation in response to a stimulus. Here we consider a rectangular monodomain LCE thin sheet divided into one high- and one low-temperature strip, which we dub a 'bistrip'.

View Article and Find Full Text PDF

Two-photon polymerization (TPP) currently offers the highest resolution available in 3D printing (∼100 nm) but requires femtosecond laser pulses at very high peak intensity (∼1 TW/cm). Here, we demonstrate 3D printing based on triplet-triplet-annihilation photopolymerization (TTAP), which achieves submicron resolution while using a continuous visible LED light source with comparatively low light intensity (∼10 W/cm). TTAP enables submicrometer feature sizes with exposure times of ∼0.

View Article and Find Full Text PDF

Sensing technology is under intense development to enable the Internet of everything and everyone in new and useful ways. Here we demonstrate a method of stretchable and self-powered temperature sensing. The basic sensing element consists of three layers: an electrolyte, a dielectric, and an electrode.

View Article and Find Full Text PDF

Demands for next-generation soft and responsive materials have sparked recent interest in the development of shape-changing particles and particle assemblies. Over the last two decades, a variety of mechanisms that drive shape change have been explored and integrated into particulate systems. Through a combination of top-down fabrication and bottom-up synthesis techniques, shape-morphing capabilities extend from the microscale to the nanoscale.

View Article and Find Full Text PDF

Oppositely charged polymerized ionic liquids (PILs) were used to form complex coacervates in two different organic solvents, 2,2,2-trifluoroethanol (TFE) and hexafluoro-2-propanol (HFIP), and the corresponding phase diagrams were constructed using UV-vis, NMR, and turbidity experiments. While previous studies on complex coacervates have focused almost exclusively on aqueous environments, the use of PILs in the current work enabled studies in solvents with substantially lower dielectric constants (27.0 for TFE, 16.

View Article and Find Full Text PDF

Crystals composed of photoreactive molecules represent a new class of photomechanical materials with the potential to generate large forces on fast timescales. An example is the photodimerization of 9--butyl-anthracene ester () in molecular crystal nanorods that leads to an average elongation of 8%. Previous work showed that this expansion results from the formation of a metastable crystalline product.

View Article and Find Full Text PDF

Cyclic actuation is critical for driving motion and transport in living systems, ranging from oscillatory motion of bacterial flagella to the rhythmic gait of terrestrial animals. These processes often rely on dynamic and responsive networks of oscillators-a regulatory control system that is challenging to replicate in synthetic active matter. Here, we describe a versatile platform of light-driven active particles with interaction geometries that can be reconfigured on demand, enabling the construction of oscillator and spinner networks.

View Article and Find Full Text PDF

Photoinduced shape morphing has implications in fields ranging from soft robotics to biomedical devices. Despite considerable effort in this area, it remains a challenge to design materials that can be both rapidly deployed and reconfigured into multiple different three-dimensional forms, particularly in aqueous environments. In this work, we present a simple method to program and rewrite spatial variations in swelling and, therefore, Gaussian curvature in thin sheets of hydrogels using photoswitchable supramolecular complexation of azobenzene pendent groups with dissolved α-cyclodextrin.

View Article and Find Full Text PDF

Photoisomerization of azobenzene in polymer matrices is a powerful method to convert photon energy into mechanical work. While most previous studies have focused on incorporating azobenzene within amorphous or liquid crystalline materials, the limited extents of molecular ordering and correspondingly modest enthalpy changes upon switching in such systems has limited the achievable energy densities. In this work, we introduce a semicrystalline main-chain poly(azobenzene), where photoisomerization is capable of reversibly triggering melting and recrystallization under essentially isothermal conditions.

View Article and Find Full Text PDF

Electroadhesion provides a simple route to rapidly and reversibly control adhesion using applied electric potentials, offering promise for a variety of applications including haptics and robotics. Current electroadhesives, however, suffer from key limitations associated with the use of high operating voltages (>kV) and corresponding failure due to dielectric breakdown. Here, a new type of electroadhesion based on heterojunctions between iono-elastomer of opposite polarity is demonstrated, which can be operated at potentials as low as ≈1 V.

View Article and Find Full Text PDF
Article Synopsis
  • Actuation in soft robotics faces challenges, but using light for actuation offers notable benefits such as remote control, minimal interference due to distinct frequencies, and effective energy transfer via lightweight fiber optic cables.
  • Light-induced actuation utilizing liquid crystal elastomers and azobenzene photochromes has been explored, showing promise in achieving desired motion.
  • A modeling framework reveals that cyclic or periodic motion can be achieved under constant light exposure, as the interplay between light absorption and deformation alters the conditions for continued deformation, enabling potential applications in closed or unstable structures.
View Article and Find Full Text PDF

Liquid crystal elastomers (LCEs) are an attractive platform for dynamic shape-morphing due to their ability to rapidly undergo large deformations. While recent work has focused on patterning the director orientation field to achieve desired target shapes, this strategy cannot be generalized to material systems where high-resolution surface alignment is impractical. Instead of programming the local orientation of anisotropic deformation, an alternative strategy for prescribed shape-morphing by programming the magnitude of stretch ratio in a thin LCE sheet with constant director orientation is developed here.

View Article and Find Full Text PDF

Functional polymers with sulfobetaine or phosphorylcholine zwitterions as pendent groups are demonstrated as both ligands and host matrices for CsPbBr perovskite nanoparticles (PNPs). These polymers produce nanocomposite films with excellent NP dispersion, optical transparency, and impressive resistance to NP degradation upon exposure to water. Multidentate interactions of the zwitterion-containing copolymers with the PNPs induce dispersed or weakly aggregated nanocomposite morphologies, depending on the extent of zwitterionic functionality in the polymer.

View Article and Find Full Text PDF