Publications by authors named "Ryan Briscoe Runquist"

Invasive species are a growing global economic and ecological problem. However, it is not well understood how environmental factors mediate invasive range expansion. In this study, we investigated the recent and rapid range expansion of common tansy across environmental gradients in Minnesota, USA.

View Article and Find Full Text PDF

Rapid evolution may play an important role in the range expansion of invasive species and modify forecasts of invasion, which are the backbone of land management strategies. However, losses of genetic variation associated with colonization bottlenecks may constrain trait and niche divergence at leading range edges, thereby impacting management decisions that anticipate future range expansion. The spatial and temporal scales over which adaptation contributes to invasion dynamics remain unresolved.

View Article and Find Full Text PDF

Understanding how spatially variable selection shapes adaptation is an area of long-standing interest in evolutionary ecology. Recent meta-analyses have quantified the extent of local adaptation, but the relative importance of abiotic and biotic factors in driving population divergence remains poorly understood. To address this gap, we combined a quantitative meta-analysis and a qualitative metasynthesis to (1) quantify the magnitude of local adaptation to abiotic and biotic factors and (2) characterize major themes that influence the motivation and design of experiments that seek to test for local adaptation.

View Article and Find Full Text PDF

Palmer amaranth (Amaranthus palmeri) is an annual plant native to the desert Southwest of the United States and Mexico and has become invasive and caused large economic losses across much of the United States. In order to examine the temporal and spatial dynamics of past invasion, and to predict future invasion, we developed a broad array of species distribution models (SDMs). In particular, we constructed sequential SDMs throughout the invasion history and asked how well those predicted future invasion (1970 to present).

View Article and Find Full Text PDF

Selection on floral traits in hermaphroditic plants is determined by both male and female reproductive success. However, predictions regarding floral trait and mating system evolution are often based solely on female fitness. Selection via male fitness has the potential to affect the outcomes of floral evolution.

View Article and Find Full Text PDF

Latitudinal gradients in biotic interactions have been suggested as causes of global patterns of biodiversity and phenotypic variation. Plant biologists have long speculated that outcrossing mating systems are more common at low than high latitudes owing to a greater predictability of plant-pollinator interactions in the tropics; however, these ideas have not previously been tested. Here, we present the first global biogeographic analysis of plant mating systems based on 624 published studies from 492 taxa.

View Article and Find Full Text PDF

Premise Of The Study: Automatic self-fertilization may influence the geography of speciation, promote reproductive isolation between incipient species, and lead to ecological differentiation. As such, selfing taxa are predicted to co-occur more often with their closest relatives than are outcrossing taxa. Despite suggestions that this pattern may be general, the extent to which mating system influences range overlap in close relatives has not been tested formally across a diverse group of plant species pairs.

View Article and Find Full Text PDF

Premise Of The Study: The population biology of outcrossing and self-fertilizing taxa is thought to differ because of the advantage that selfers have in colonizing unoccupied sites where mates and pollinators may be limiting (Baker's Law). This reduced tendency for outcrossers to colonize new sites, along with their greater dependence on pollinators to disperse pollen, has the potential to differently influence the genetic diversity and structure of outcrossing and selfing populations.

Methods: We conducted a comparative population genetic study of two sister outcrossing and selfing subspecies of Clarkia xantiana that have very recently diverged.

View Article and Find Full Text PDF

Species' geographic ranges vary enormously, and even closest relatives may differ in range size by several orders of magnitude. With data from hundreds of species spanning 20 genera in 15 families, we show that plant species that autonomously reproduce via self-pollination consistently have larger geographic ranges than their close relatives that generally require two parents for reproduction. Further analyses strongly implicate autonomous self-fertilisation in causing this relationship, as it is not driven by traits such as polyploidy or annual life history whose evolution is sometimes correlated with selfing.

View Article and Find Full Text PDF

A major goal of speciation research is to understand the processes involved in the earliest stages of the evolution of reproductive isolation (RI). One important challenge has been to identify systems where lineages have very recently diverged and opportunities for hybridization are present. We conducted a comprehensive examination of the components of RI across the life cycle of two subspecies of Clarkia xantiana, which diverged recently (ca.

View Article and Find Full Text PDF

Background And Aims: Reproductive character displacement (RCD) is often an important signature of reinforcement when partially cross-compatible taxa meet in secondary sympatry. In this study, floral evolution is examined during the Holocene range expansion of Clarkia xantiana subsp. parviflora from eastern Pleistocene refugia to a western zone of sympatry with its sister taxon, subsp.

View Article and Find Full Text PDF

A plant species immigrating into a community may experience a rarity disadvantage due to competition for the services of pollinators. These negative reproductive interactions have the potential to lead to competitive displacement or exclusion of a species from a site. In this study, we used one- and two-species arrays of potted plants to test for density and frequency dependence in pollinator-mediated and above-ground intraspecific and interspecific competition between two species of Limnanthes that have overlapping ranges, but rarely occur in close sympatry.

View Article and Find Full Text PDF

Premise Of Study: Pollinator visits are essential for reproduction in many plants, yet interspecific movements of pollinators can also lead to competitive interactions between coflowering species. Pollination-mediated reductions in fertility could potentially lead to exclusion of competing plant species, and may generate spatial variation in the associations among coflowering species across a landscape.

Methods: I documented the potential for heterospecific pollen transfer to cause competitive interactions between two annual grassland species native to California, Limnanthes douglasii subsp.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: