Grassland ecosystems of the Northern Plains have changed substantially since European settlement began in the latter half of the 19th century. This has led to significant changes to the dung-dwelling arthropod community in the region. As humans continue to modify large portions of the landscape, inventories of ecologically significant communities are important to collect in order to monitor the long-term effects of anthropogenic biomes.
View Article and Find Full Text PDFReason For Doing The Work: Plant biomass is a commonly used metric to assess agricultural health and productivity. Removing plant material is the most accurate method to estimate plant biomass, but this approach is time consuming, labor intensive, and destructive. Previous attempts to use indirect methods to estimate plant biomass have been limited in breadth and/or have added complexity in data collection and/or modeling.
View Article and Find Full Text PDFGrassland systems constitute a significant portion of the land area in the United States and as a result harbors significant arthropod biodiversity. During this time of biodiversity loss around the world, bioinventories of ecologically important habitats serve as important indicators for the effectiveness of conservation efforts. We conducted a bioinventory of the foliar, soil, and dung arthropod communities in 10 cattle pastures located in the southeastern United States during the 2018 grazing season.
View Article and Find Full Text PDFOngoing efforts attempt to define farms as regenerative to aid marketers, policymakers, farmers, etc. The approach needs to balance precision with function, and must be transparent, simple, scalable, transferable, incorruptible, and replicable. We developed practice-based scoring systems to distinguish regenerative cropland and rangeland, and validate them based on whether these scores scaled with regenerative goals on actual farm operations.
View Article and Find Full Text PDFRemote sensing data that are efficiently used in ecological research and management are seldom used to study insect pest infestations in agricultural ecosystems. Here, we used multispectral satellite and aircraft data to evaluate the relationship between normalized difference vegetation index (NDVI) and Hessian fly (Mayetiola destructor) infestation in commercial winter wheat (Triticum aestivum) fields in Kansas, USA. We used visible and near-infrared data from each aerial platform to develop a series of NDVI maps for multiple fields for most of the winter wheat growing season.
View Article and Find Full Text PDFMonitoring of Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae), populations is important for targeted management methods. Also, effectiveness of monitoring efforts is critical to surveillance efforts in regions of the world without this pest. Current Hessian fly monitoring traps rely purely on a single attractant, the female sex pheromone, which is ineffective for monitoring females in the population.
View Article and Find Full Text PDFThe nutrients found in prey and nonprey foods, and relative digestibility of these foods, has a major influence on diet selection by omnivorous insects. Many insects have developed symbiotic relationships with gut bacteria to help with extracting nutrition from nonprey diets. Gryllus pennsylvanicus (Burmeister) (Orthoptera: Gryllidae) was assigned to one of two treatment groups, antibiotic-treated and nonantibiotic-treated, and consumption of seeds (nonprey) and eggs (prey) were measured.
View Article and Find Full Text PDF