Publications by authors named "Ryan Armiger"

In the face of increasing antimicrobial tolerance and resistance there is a global obligation to optimise oral antimicrobial dosing strategies including narrow spectrum penicillins, such as penicillin-V. We conducted a randomised, crossover study in healthy volunteers to characterise the influence of probenecid on penicillin-V pharmacokinetics and estimate the pharmacodynamics against Streptococcus pneumoniae. Twenty participants took six doses of penicillin-V (250 mg, 500 mg or 750 mg four times daily) with and without probenecid.

View Article and Find Full Text PDF

Real-time continuous glucose monitoring (CGM), augmented with accurate glucose prediction, offers an effective strategy for maintaining blood glucose levels within a therapeutically appropriate range. This is particularly crucial for individuals with type 1 diabetes (T1D) who require long-term self-management. However, with extensive glycemic variability, developing a prediction algorithm applicable across diverse populations remains a significant challenge.

View Article and Find Full Text PDF

The Advanced Bolus Calculator for Type 1 Diabetes (ABC4D) is a decision support system using the artificial intelligence technique of case-based reasoning to adapt and personalize insulin bolus doses. The integrated system comprises a smartphone application and clinical web portal. We aimed to assess the safety and efficacy of the ABC4D (intervention) compared with a nonadaptive bolus calculator (control).

View Article and Find Full Text PDF

Sub-therapeutic dosing of piperacillin-tazobactam in critically-ill patients is associated with poor clinical outcomes and may promote the emergence of drug-resistant infections. In this paper, an investigation of whether closed-loop control can improve pharmacokinetic-pharmacodynamic (PK-PD) target attainment is described. An platform was developed using PK data from 20 critically-ill patients receiving piperacillin-tazobactam where serum and tissue interstitial fluid (ISF) PK were defined.

View Article and Find Full Text PDF

Background: User-developed automated insulin delivery systems, also referred to as do-it-yourself artificial pancreas systems (DIY APS), are in use by people living with type 1 diabetes. In this work, we evaluate, in silico, the DIY APS Loop control algorithm and compare it head-to-head with the bio-inspired artificial pancreas (BiAP) controller for which clinical data are available.

Methods: The Python version of the Loop control algorithm called PyLoopKit was employed for evaluation purposes.

View Article and Find Full Text PDF