Background: Direct assessment of microcirculatory function remains a critical care research tool but approaches for analysis of microcirculatory videomicroscopy clips are shifting from manual to automated algorithms, with a view to clinical application in the intensive care unit. Automated analysis software associated with current sidestream darkfield videomicroscopy systems is demonstrably unreliable; therefore, semi-automated analysis of captured clips should be undertaken in older generations of software. We present a method for capture of microcirculatory clips using current version videomicroscope hardware and resizing of clips to allow compatibility with legacy analysis software.
View Article and Find Full Text PDFIt is generally accepted that the human abdominal wall comprises skin, subcutaneous tissues, muscles and their aponeuroses, and the parietal peritoneum. Understanding these layers and their mechanical properties provides valuable information to those designing procedural skills trainers, supporting surgical procedures (hernia repair), and engineering-based work (in silico simulation). However, there is little literature available on the mechanical properties of the abdominal wall in layers or as a composite in the context of designing a procedural skills trainer.
View Article and Find Full Text PDFObjective: To examine the relationship between sublingual microcirculatory measures and frailty index in those attending a kidney transplant assessment clinic.
Methods: Patients recruited had their sublingual microcirculation taken using sidestream dark field videomicroscopy (MicroScan, Micro Vision Medical, Amsterdam, the Netherlands) and their frailty index score using a validated short form via interview.
Results: A total of 44 patients were recruited with two being excluded due to microcirculatory image quality scores exceeding 10.