Publications by authors named "Ryan A Orizondo"

Introduction: Machine perfusion can enable isolated support of composite tissues, such as free flaps. The goal of perfusion in this setting is to preserve tissues prior to transplantation or provide transient support at the wound bed. This study aimed to establish a rodent model of machine perfusion in a fasciocutaneous-free flap to serve as an affordable testbed and determine the potential of the developed support protocol to deter ischemia-related metabolic derangement.

View Article and Find Full Text PDF

Developing an ambulatory assist lung (AAL) for patients who need continuous extracorporeal membrane oxygenation has been associated with several design objectives, including the design of compact components, optimization of gas transfer efficiency, and reduced thrombogenicity. In an effort to address thrombogenicity concerns with currently utilized component biomaterials, a low molecular weight water soluble siloxane-functionalized zwitterionic sulfobetaine (SB-Si) block copolymer was coated on a full-scale AAL device set via a one pot aqueous circulation coating. All device parts including hollow fiber bundle, housing, tubing and cannular were successfully coated with increasing atomic compositions of the SB block copolymer and the coated surfaces showed a significant reduction of platelet deposition while gas exchange performance was sustained.

View Article and Find Full Text PDF

Poly(dimethylsiloxane) (PDMS) has been used in a wide range of biomedical devices and medical research due to its biostability, cytocompatibility, gas permeability, and optical properties. Yet, some properties of PDMS create critical limitations, particularly fouling through protein and cell adhesion. In this study, a diallyl-terminated sulfobetaine (SB-diallyl) molecule was synthesized and then directly mixed with a commercial PDMS base (Sylgard 184) and curing agent to produce a zwitterionic group-bearing PDMS (PDMS-SB) hybrid that does not require a complex or an additional surface modification process for the desired end product.

View Article and Find Full Text PDF

Background: A wearable artificial lung could improve lung transplantation outcomes by easing implementation of physical rehabilitation during long-term pretransplant respiratory support. The Modular Extracorporeal Lung Assist System (ModELAS) is a compact pumping artificial lung currently under development. This study evaluated the long-term in vivo performance of the ModELAS during venovenous support in awake sheep.

View Article and Find Full Text PDF

Background: Non-invasive and lung-protective ventilation techniques may improve outcomes for patients with an acute exacerbation of chronic obstructive pulmonary disease or moderate acute respiratory distress syndrome by reducing airway pressures. These less invasive techniques can fail due to hypercapnia and require transitioning patients to invasive mechanical ventilation. Extracorporeal CO removal devices remove CO independent of the lungs thereby controlling the hypercapnia and permitting non-invasive or lung-protective ventilation techniques.

View Article and Find Full Text PDF

Polydimethylsiloxane (PDMS) is commonly used in medical devices because it is non-toxic and stable against oxidative stress. Relatively high blood platelet adhesion and the need for chemical crosslinking through curing, however, limit its utility. In this research, a biostable PDMS-based polyurethane-urea bearing zwitterion sulfobetaine (PDMS-SB-UU) was synthesized for potential use in the fabrication or coating of blood-contacting devices, such as a conduits, artificial lungs, and microfluidic devices.

View Article and Find Full Text PDF

Respiratory failure is a significant problem within the pediatric population. A means of respiratory support that readily allows ambulation could improve treatment. The Pittsburgh Pediatric Ambulatory Lung (P-PAL) is being developed as a wearable pediatric pump-lung for long-term respiratory support and has previously demonstrated positive benchtop results.

View Article and Find Full Text PDF

The efficacy of inhaled antibiotics is often impaired by insufficient drug penetration into plugged and poorly ventilated airways. Liquid ventilation with perfluorocarbon (PFC) containing emulsified aqueous antibiotics, or antibacterial perfluorocarbon ventilation, could potentially improve treatment of respiratory infections when used as an adjunct therapy to inhaled antibiotics. The molecular structure and concentration of the fluorosurfactant used to stabilize such water-in-PFC emulsions will have significant effects on the efficacy and safety of the resulting treatment.

View Article and Find Full Text PDF

Gas transfer through hollow fiber membranes (HFMs) can be increased via fiber oscillation. Prior work, however, does not directly translate to present-day, full-scale artificial lungs. This in vitro study characterized the effects of HFM oscillations on oxygenation and hemolysis for a pediatric-sized HFM bundle.

View Article and Find Full Text PDF

Acute and chronic respiratory failure are a significant source of pediatric morbidity and mortality. Current respiratory support options used to bridge children to lung recovery or transplantation typically render them bedridden and can worsen long-term patient outcomes. The Pittsburgh Pediatric Ambulatory Lung (P-PAL) is a wearable pediatric blood pump and oxygenator (0.

View Article and Find Full Text PDF

Background: The effectiveness of inhaled aerosolized antibiotics is limited by poor ventilation of infected airways. Pulmonary delivery of antibiotics emulsified within liquid perfluorocarbon [antibacterial perfluorocarbon ventilation (APV)] may solve this problem through better airway penetration and improved spatial uniformity. However, little work has been done to explore emulsion formulation and the corresponding effects on drug delivery during APV.

View Article and Find Full Text PDF

Background: Aerosolized delivery of antibiotics is hindered by poor penetration within distal and plugged airways. Antibacterial perfluorocarbon ventilation (APV) is a proposed solution in which the lungs are partially or totally filled with perfluorocarbon (PFC) containing emulsified antibiotics. The purpose of this study was to evaluate emulsion stability and rheological, antibacterial, and pharmacokinetic characteristics.

View Article and Find Full Text PDF

Current thoracic artificial lungs (TALs) possess blood flow impedances greater than the natural lungs, resulting in abnormal pulmonary hemodynamics when implanted. This study sought to reduce TAL impedance using computational fluid dynamics (CFD). CFD was performed on TAL models with inlet and outlet expansion and contraction angles, θ, of 15°, 45°, and 90°.

View Article and Find Full Text PDF