Stream macroinvertebrate assemblages are shaped by natural and human-related factors that operate through complex hierarchical pathways. Quantifying these relationships can provide additional insights into stream ecological assessment. We applied a structural equation modeling framework to evaluate hypothesized pathways by which watershed, riparian, and in-stream factors affect benthic macroinvertebrate condition in the Western Mountains (WMT) and Xeric (XER) ecoregions in the United States.
View Article and Find Full Text PDFContinued large-scale public investment in declining ecosystems depends on demonstrations of "success". While the public conception of "success" often focuses on restoration to a pre-disturbance condition, the scientific community is more likely to measure success in terms of improved ecosystem health. Using a combination of literature review, workshops and expert solicitation we propose a generalized framework to improve ecosystem health in highly altered river basins by reducing ecosystem stressors, enhancing ecosystem processes and increasing ecosystem resilience.
View Article and Find Full Text PDFAir quality regulations have led to decreased nitrogen (N) and sulfur deposition across the conterminous United States (CONUS) during the last several decades, particularly in the eastern parts. But it is unclear if declining deposition has altered stream N at large scales. We compared watershed N inputs with N chemistry from over 2,000 CONUS streams where deposition was the largest N input to the watershed.
View Article and Find Full Text PDFEutrophication, harmful algal blooms, and human health impacts are critical environmental challenges resulting from excess nitrogen and phosphorus in surface waters. Yet we have limited information regarding how wetland characteristics mediate water quality across watershed scales. We developed a large, novel set of spatial variables characterizing hydrological flowpaths from wetlands to streams, that is, "wetland hydrological transport variables," to explore how wetlands statistically explain the variability in total nitrogen (TN) and total phosphorus (TP) concentrations across the Upper Mississippi River Basin (UMRB) in the United States.
View Article and Find Full Text PDFChannel dimensions (width and depth) at varying flows influence a host of instream ecological processes, as well as habitat and biotic features; they are a major consideration in stream habitat restoration and instream flow assessments. Models of widths and depths are often used to assess climate change vulnerability, develop endangered species recovery plans, and model water quality. However, development and application of such models require specific skillsets and resources.
View Article and Find Full Text PDFWetland hydrologic connections to downstream waters influence stream water quality. However, no systematic approach for characterizing this connectivity exists. Here using physical principles, we categorized conterminous US freshwater wetlands into four hydrologic connectivity classes based on stream contact and flowpath depth to the nearest stream: riparian, non-riparian shallow, non-riparian mid-depth and non-riparian deep.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2023
The US Environmental Protection Agency (EPA) uses a water quality index (WQI) to estimate benefits of proposed Clean Water Act regulations. The WQI is relevant to human use value, such as recreation, but may not fully capture aspects of nonuse value, such as existence value. Here, we identify an index of biological integrity to supplement the WQI in a forthcoming national stated preference survey that seeks to capture existence value of streams and lakes more accurately within the conterminous United States (CONUS).
View Article and Find Full Text PDFRiver and stream conservation programs have historically focused on a single spatial scale, for example, a watershed or stream site. Recently, the use of landscape information (e.g.
View Article and Find Full Text PDFHarmful algal blooms caused by cyanobacteria are a threat to global water resources and human health. Satellite remote sensing has vastly expanded spatial and temporal data on lake cyanobacteria, yet there is still acute need for tools that identify which waterbodies are at-risk for toxic cyanobacterial blooms. Algal toxins cannot be directly detected through imagery but monitoring toxins associated with cyanobacterial blooms is critical for assessing risk to the environment, animals, and people.
View Article and Find Full Text PDFLake water levels are integral to lake function, but hydrologic changes from land and water management may alter lake fluctuations beyond natural ranges. We constructed a conceptual model of multifaceted drivers of lake water-levels and evaporation-to-inflow ratio (Evap:Inflow). Using a structural equation modeling framework, we tested our model on 1) a national subset of lakes in the conterminous United States with minimal water management to describe natural drivers of lake hydrology and 2) five ecoregional subsets of lakes to explore regional variation in water management effects.
View Article and Find Full Text PDFTaxonomic inconsistency in species-level identifications has constrained use of diatoms as biological indicators in aquatic assessments. We addressed this problem by developing diatom multimetric indices (MMIs) of ecological condition using genus-level taxonomy and trait-based autecological information. The MMIs were designed to assess river and stream chemical, physical and biological condition across the conterminous United States.
View Article and Find Full Text PDFAntimicrobial resistance (AR) is a serious global problem due to the overuse of antimicrobials in human, animal, and agriculture sectors. There is intense research to control the dissemination of AR, but little is known regarding the environmental drivers influencing its spread. Although AR genes (ARGs) are detected in many different environments, the risk associated with the spread of these genes to microbial pathogens is unknown.
View Article and Find Full Text PDFWatershed resilience is the ability of a watershed to maintain its characteristic system state while concurrently resisting, adapting to, and reorganizing after hydrological (for example, drought, flooding) or biogeochemical (for example, excessive nutrient) disturbances. Vulnerable waters include non-floodplain wetlands and headwater streams, abundant watershed components representing the most distal extent of the freshwater aquatic network. Vulnerable waters are hydrologically dynamic and biogeochemically reactive aquatic systems, storing, processing, and releasing water and entrained (that is, dissolved and particulate) materials along expanding and contracting aquatic networks.
View Article and Find Full Text PDFTo understand the environmental and anthropogenic drivers of stream nitrogen (N) concentrations across the conterminous US, we combined summer low-flow data from 4997 streams with watershed information across three survey periods (2000-2014) of the US EPA's National Rivers and Streams Assessment. Watershed N inputs explained 51% of the variation in log-transformed stream total N (TN) concentrations. Both N source and input rates influenced stream NO/TN ratios and N concentrations.
View Article and Find Full Text PDFSustainable development supports watershed processes and functions. To aid the sustainable development of the western Balkans' transboundary river and lake basins, the Regional Environmental Center for Central and Eastern Europe and the US Environmental Protection Agency (EPA) adapted the EPA's Index of Watershed Integrity (IWI) following the devasting 2014 floods in Albania, Bosnia and Herzegovina, Kosovo, North Macedonia, Montenegro, and Serbia. The IWI evaluates six watershed functions based on a suite of anthropogenic stressors (e.
View Article and Find Full Text PDFExcess nitrate in drinking water is a human health concern, especially for young children. Public drinking water systems in violation of the 10 mg nitrate-N/L maximum contaminant level (MCL) must be reported in EPA's Safe Drinking Water Information System (SDWIS). We used SDWIS data with random forest modeling to examine the drivers of nitrate violations across the conterminous U.
View Article and Find Full Text PDFWatersheds provide a range of services valued by society, incorporating biotic and abiotic functions within their boundaries. Recently, an operational definition of watershed integrity was applied and indices of watershed integrity (IWI) and catchment integrity (ICI) were developed and mapped for the conterminous United States. However, these indices were originally derived using equally-weighted first-order approximations of relationships between anthropogenic stressors (obtained from the U.
View Article and Find Full Text PDFNatural and human-related landscape features influence the ecology and water quality of lakes. Summarizing these features in a hydrologically meaningful way is critical to understanding and managing lake ecosystems. Such summaries are often done by delineating watershed boundaries of individual lakes.
View Article and Find Full Text PDFWatershed integrity is the capacity of a watershed to support and maintain the full range of ecological processes and functions essential to sustainability. Using information from EPA's StreamCat dataset, we calculated and mapped an Index of Watershed Integrity (IWI) for 2.6 million watersheds in the conterminous US with first-order approximations of relationships between stressors and six watershed functions: hydrologic regulation, regulation of water chemistry, sediment regulation, hydrologic connectivity, temperature regulation, and habitat provision.
View Article and Find Full Text PDFField-based methods increase relevance and realism when setting water quality criteria. They also pose challenges. To enable a consistent process, a flow chart was developed for choosing between two field-based methods and then selecting among candidate results.
View Article and Find Full Text PDFUnderstanding and mapping the spatial variation in stream biological condition could provide an important tool for conservation, assessment, and restoration of stream ecosystems. The USEPA's 2008-2009 National Rivers and Streams Assessment (NRSA) summarizes the percentage of stream lengths within the conterminous United States that are in good, fair, or poor biological condition based on a multimetric index of benthic invertebrate assemblages. However, condition is usually summarized at regional or national scales, and these assessments do not provide substantial insight into the spatial distribution of conditions at unsampled locations.
View Article and Find Full Text PDFRandom forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological data sets, there is limited guidance on variable selection methods for RF modeling. Typically, either a preselected set of predictor variables are used or stepwise procedures are employed which iteratively remove variables according to their importance measures.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2014
Hazard quotients based on a point-estimate comparison of exposure to a toxicity reference value (TRV) are commonly used to characterize risks for wildlife. Quotients may be appropriate for screening-level assessments but should be avoided in detailed assessments, because they provide little insight regarding the likely magnitude of effects and associated uncertainty. To better characterize risks to wildlife and support more informed decision making, practitioners should make full use of available dose-response data.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2010
The Crown Land Restoration Branch (CLRB) of the British Columbia Ministry of Agriculture and Lands is responsible for managing thousands of historic and abandoned mine sites on provincial lands (referred to as Crown Contaminated Sites). For most of these sites, there is limited information available regarding the extent of potential contamination or potential human health and ecological risks. Given the large number of sites, the CLRB sought a system for prioritizing investigation and management efforts among them.
View Article and Find Full Text PDFEnviron Biosafety Res
July 2006