Stimuli-responsive microgels have attracted great interest in recent years as building blocks for fabricating smart surfaces with many technological applications. In particular, PNIPAM microgels are promising candidates for creating thermo-responsive scaffolds to control cell growth and detachment via temperature stimuli. In this framework, understanding the influence of the solid substrate is critical for tailoring microgel coatings to specific applications.
View Article and Find Full Text PDFStimuli-responsive microgels have recently attracted great attention in fundamental research as their soft particles can be deformed and compressed at high packing fractions resulting in singular phase behaviours. Moreover, they are also well suited for a wide variety of applications such as drug delivery, tissue engineering, organ-on-chip devices, microlenses fabrication and cultural heritage. Here, thermoresponsive and pH-sensitive cross-linked microgels, composed of interpenetrating polymer networks of poly(-isopropylacrylamide) (PNIPAM) and poly(acrylic acid) (PAAc), are synthesized by a precipitation polymerization method in water and investigated through differential scanning calorimetry in a temperature range across the volume phase transition temperature of PNIPAM microgels.
View Article and Find Full Text PDFThe phase behaviour of soft colloids has attracted great attention due to the large variety of new phenomenologies emerging from their ability to pack at very high volume fractions. Here we report rheological measurements on interpenetrated polymer network microgels composed of poly(-isopropylacrylamide) (PNIPAM) and polyacrylic acid () at fixed content as a function of weight concentration. We found three different rheological regimes characteristic of three different states: a Newtonian shear-thinning fluid, an attractive glass characterized by a yield stress, and a jamming state.
View Article and Find Full Text PDFMicrogels composed of stimuli responsive polymers have attracted worthwhile interest as model colloids for theorethical and experimental studies and for nanotechnological applications. A deep knowledge of their behaviour is fundamental for the design of new materials. Here we report the current understanding of a dual responsive microgel composed of poly(N-isopropylacrylamide) (PNIPAM), a temperature sensitive polymer, and poly(acrylic acid) (PAAc), a pH sensitive polymer, at different temperatures, PAAc contents, concentrations, solvents and pH.
View Article and Find Full Text PDFDynamic Light Scattering (DLS) and Small-Angle Neutron Scattering (SANS) are two key tools to probe the dynamic and static structure factors, respectively, in soft matter. Usually, DLS and SANS measurements are performed separately, in different laboratories, on different samples, and at different times. However, this methodology has particular disadvantages for a large variety of soft materials, which exhibit a high sensitivity to small changes in fundamental parameters, such as waiting times, concentration, pH, and ionic strength.
View Article and Find Full Text PDFInterpenetrated polymer network microgels, composed of crosslinked networks of poly(-isopropylacrylamide) and polyacrylic acid (PAAc), have been investigated through rheological measurements at four different amounts of PAAc. Both PAAc content and crosslinking degree modify particle dimensions, mass and softness, thereby strongly affecting the volume fraction and the system viscosity. Here the volume fraction is derived from the flow curves at low concentrations by fitting the zero-shear viscosity with the Einstein-Batchelor equation which provides a parameterto shift weight concentration to volume fraction.
View Article and Find Full Text PDFBackground: Idelalisib is a phosphatidylinositol 3-kinase δ inhibitor approved for relapsed/refractory follicular lymphoma, a type of indolent non-Hodgkin lymphoma (iNHL), and chronic lymphocytic leukemia (CLL). Idelalisib-triggered adverse events (AEs) may be managed with treatment interruption and/or dose reduction, potentially extending therapy duration and increasing the likelihood of continued response.
Patients And Methods: Post hoc analyses were conducted to evaluate clinical outcomes after AE-induced idelalisib interruption for 125 patients with iNHL and 283 with CLL.
The advent of novel B-cell receptor pathway targeting agents like ibrutinib dramatically changed management of B-cell malignancies. However, with concomitant anticoagulation (AC) and antiplatelet (AP) therapy, ibrutinib is associated with increased bleeding. This analysis aimed to determine the role of AC/AP therapy in patients with idelalisib-treated B-cell malignancies and to establish if it contributes to increased bleeding events.
View Article and Find Full Text PDFMicrogel particles have emerged in the past few years as a favorite model system for fundamental science and for innovative applications ranging from the industrial to biomedical fields. Despite their potentialities, no works so far have focused on the application of microgels for cultural heritage preservation. Here we show their first use for this purpose, focusing on wet paper cleaning.
View Article and Find Full Text PDFHypothesis: The peculiar swelling behaviour of poly(N-isopropylacrylamide) (PNIPAM)-based responsive microgels provides the possibility to tune both softness and volume fraction with temperature, making these systems of great interest for technological applications and theoretical implications. Their intriguing phase diagram can be even more complex if poly(acrylic acid) (PAAc) is interpenetrated within PNIPAM network to form Interpenetrating Polymer Network (IPN) microgels that exhibit an additional pH-sensitivity. The effect of the PAAc/PNIPAM polymeric ratio on both swelling capability and dynamics is still matter of investigation.
View Article and Find Full Text PDFFront Cell Neurosci
February 2019
Extracellular-released vesicles (EVs), such as microvesicles (MV) and exosomes (Exo) provide a new type of inter-cellular communication, directly transferring a ready to use box of information, consisting of proteins, lipids and nucleic acids. In the nervous system, EVs participate to neuron-glial cross-talk, a bidirectional communication important to preserve brain homeostasis and, when dysfunctional, involved in several CNS diseases. We investigated whether microglia-derived EVs could be used to transfer a protective phenotype to dysfunctional microglia in the context of a brain tumor.
View Article and Find Full Text PDFMicrogel suspensions of an interpenetrated Polymer Network (IPN) of PNIPAM and PAAc in DO have been investigated through dynamic light scattering as a function of temperature, pH and concentration across the Volume Phase Transition (VPT). The dynamics of the system is slowed down under H/D isotopic substitution due to different balance states between polymer/polymer and polymer/solvent interactions suggesting the crucial role played by H-bonding. The swelling behavior, reduced with respect to PNIPAM and water, has been described by the Flory-Rehner theory, tested for PNIPAM microgel and successfully expanded to higher order for IPN microgels.
View Article and Find Full Text PDFThe time evolution of both dynamic and static structure factors of a charged colloidal clay, Laponite, dispersed in both HO and DO solvents has been investigated through multiangle dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) as a function of weight concentration. The aging phenomenology and the formation of arrested states, both gel and glass, are preserved in DO, while the dynamics is slowed down with respect to water. These findings are important to understand the role played by the solvent in the interparticle interactions and for techniques such as neutron scattering and nuclear magnetic resonance that allow for the extension of the accessible scattering vectors and time scales.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
February 2017
Background: A set of engineered ferritin mutants from Archaeoglobus fulgidus (Af-Ft) and Pyrococcus furiosus (Pf-Ft) bearing cysteine thiols in selected topological positions inside or outside the ferritin shell have been obtained. The two apo-proteins were taken as model systems for ferritin internal cavity accessibility in that Af-Ft is characterized by the presence of a 45Å wide aperture on the protein surface whereas Pf-Ft displays canonical (threefold) channels.
Methods: Thiol reactivity has been probed in kinetic experiments in order to assess the protein matrix permeation properties towards the bulky thiol reactive DTNB (5,5'-dithiobis-2-nitrobenzoic acid) molecule.
The temperature dependence of the local intra-particle structure of colloidal microgel particles, composed of interpenetrated polymer networks, has been investigated by small-angle neutron scattering at different pH and concentrations, in the range (299÷315) K, where a volume phase transition from a swollen to a shrunken state takes place. Data are well described by a theoretical model that takes into account the presence of both interpenetrated polymer networks and cross-linkers. Two different behaviors are found across the volume phase transition.
View Article and Find Full Text PDFThe aging dynamics of a colloidal glass has been studied by multiangle dynamic light scattering, neutron spin echo, X-ray photon correlation spectroscopy and molecular dynamics simulations. The two relaxation processes, microscopic (fast) and structural (slow), have been investigated in an unprecedentedly wide range of time and length scales covering both ergodic and nonergodic regimes. The microscopic relaxation time remains diffusive at all length scales across the glass transition scaling with wavevector Q as Q(-2).
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2014
The process of dynamical arrest, leading to formation of different arrested states such as glasses and gels, along with the closely related process of aging, is central for both basic research and technology. Here we report on a study of the time-dependent structural evolution of two aqueous Laponite clay suspensions at different weight concentrations. Neutron diffraction experiments have been performed with the near and intermediate range order diffractometer (NIMROD) that allows studies of the structure of liquids and disordered materials over a continuous length scale ranging from 1 to 300 Å, i.
View Article and Find Full Text PDFColloidal suspensions are characterized by a variety of microscopic interactions, which generate unconventional phase diagrams encompassing fluid, gel and glassy states and offer the possibility to study new phase and/or state transitions. Among these, glass-glass transitions are rare to be found, especially at ambient conditions. Here, through a combination of dilution experiments, X-ray photon correlation spectroscopy, small angle X-ray scattering, rheological measurements and Monte Carlo simulations, we provide evidence of a spontaneous glass-glass transition in a colloidal clay.
View Article and Find Full Text PDFClay-polymer compounds have recently attracted increasing attention due to their intriguing physical properties in colloidal science and their rheological non-trivial behaviour in technological applications. Aqueous solutions of Laponite clay spontaneously age from a liquid up to an arrested state of different nature (gel or glass) depending on the colloidal volume fraction and ionic strength. We have investigated, through dynamic light scattering, how the aging dynamics of Laponite dispersions at fixed clay concentration (Cw = 2.
View Article and Find Full Text PDFWe demonstrate a new, nonlinear optical effect of electric currents. First, a steady current is generated by applying a voltage on a doped GaAs crystal. We demonstrate that this current induces second-harmonic generation of a probe laser pulse.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2012
There is a growing interest in the earth abundant and nontoxic iron disulfide (FeS(2)) photovoltaic materials. Here, we report the synthesis of FeS(2) nanoplates with different spectral features which we have associated with thicknesses and crystallization. The structure and crystalline order of ultrathin FeS(2) nanoplates have a strong influence on the carrier lifetime, electronic and optical properties.
View Article and Find Full Text PDFWe report observation of intrinsic inverse spin Hall effect in undoped GaAs multiple quantum wells with a sample temperature of 10 K. A transient ballistic pure spin current is injected by a pair of laser pulses through quantum interference. By time resolving the dynamics of the pure spin current, the momentum relaxation time is deduced, which sets the lower limit of the scattering time between electrons and holes.
View Article and Find Full Text PDFThe relevance of anisotropic interactions in colloidal systems has recently emerged in the context of the rational design of new soft materials. Patchy colloids of different shapes, patterns and functionalities are considered the new building blocks of a bottom-up approach toward the realization of self-assembled bulk materials with predefined properties. The ability to tune the interaction anisotropy will make it possible to recreate molecular structures at the nano- and micro-scales (a case with tremendous technological applications), as well as to generate new unconventional phases, both ordered and disordered.
View Article and Find Full Text PDFUsing experiments, theory and simulations, we show that the arrested state observed in a colloidal clay at high concentrations is stabilized by screened Coulomb repulsion (Wigner glass). Dilution experiments allow us to distinguish this disconnected state, which melts upon addition of water, from a low-concentration gel state, which does not melt. Theoretical modeling and simulations at high concentrations reproduce the measured small angle x-ray scattering static structure factors and confirm the long-range electrostatic nature of the arrested structure.
View Article and Find Full Text PDF