Publications by authors named "Ruzhu Chen"

Objective: To study the mechanism of learning and memory dysfuction in the transgenic mouse expressing human tau 40 isoform with P301L mutation (F10).

Methods: The human tau protein expression and phosphor-tau protein levels were detected with Western blot method. The neurofibrillary tangles were observed with Bielshowsky silver stain.

View Article and Find Full Text PDF

Aim: To explore the modulatory effect of desensitized α7-containing nicotinic receptors (α7-nAChRs) on excitatory and inhibitory amino acid receptors in cultured hippocampal neurons and to identify the mechanism underlying this effect.

Methods: Whole-cell patch-clamp recordings were performed on cultured rat hippocampal neurons to measure α7-nAChR currents and to determine the role of desensitized α7-nAChRs on brain amino acid receptor activity.

Results: Pulse and perfusion applications of the α7-nAChR agonist choline were applied to induce different types of α7-nAChR desensitization in cultured hippocampal neurons.

View Article and Find Full Text PDF

Different patterns of olfactory dysfunction have been found in both patients and mouse models of Alzheimer's Disease. However, the underlying mechanism of the dysfunction remained unknown. Deficits of nitric oxide production in brain can cause olfactory dysfunction by preventing the formation of olfactory memory.

View Article and Find Full Text PDF

Secalonic acid A (SAA) is a natural compound found in marine fungi. We have reported that SAA can attenuate the cytotoxicity of colchicine in rat cortical neurons. Whether SAA can also inhibit the neurotoxicity of 1-methyl-4-phenylpyridinium (MPP(+)) in dopaminergic neurons has not been investigated.

View Article and Find Full Text PDF

Objective: To establish the triple-transgenic mouse model and study their biological characteristics by molecular biology, behavior and pathology.

Methods: Hybrid the Tau and amyloid precursor protein (APP)/presenilins (PS1) transgenic mouse, the genotype of offspring mice were identified by PCR. Transcribed target genes were detected by RT-PCR.

View Article and Find Full Text PDF

Background: Pancreatic beta-cell apoptosis induced by lipotoxicity, to a large extent, contributes to the progression of type 2 diabetes. To investigate the mechanism of free fatty acid induced apoptosis, we aimed to study the effects of palmitic acid (PA) on the apoptosis and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression in βTC3 cells as well as the possible role of nuclear factor-κB (NF-κB) in this process.

Methods: Hoechst 33258 was used to detect βTC3 cell apoptosis, which was induced by PA stimulation for 12 hours.

View Article and Find Full Text PDF

Although nicotine is known to protect against β-amyloid (Aβ)-induced neurotoxicity, the effect of nicotine on colchicine-induced neurotoxicity remains unknown. Colchicine is a microtubule-interfering agent and is able to induce neural apoptosis. Here we investigated whether nicotine exhibits similar neuroprotective effects and the mechanism against colchicine-induced neurotoxicity of the primarily cultured cortical neurons.

View Article and Find Full Text PDF

Objectives: Previously, the flavonoid (±)-catechin was shown to exert potent neuroprotective action in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease model. The purpose of this study was to investigate whether the different enantiomers of catechin ((+)-catechin, (-)-catechin and (±)-catechin, a 50:50 mixture of (+)-catechin and (-)-catechin) could protect SH-SY5Y cells against 1-methyl-4-phenylpyridinium ion (MPP(+) ) toxicity by decreasing the generation of oxygen free radicals. The inhibitive effect of (±)-catechin on JNK/c-Jun activation was investigated.

View Article and Find Full Text PDF

There are few articles about the cytotoxicity evoked by secalonic acid A (SAA) in some tumor cells. It has not yet been reported whether SAA has any action on neurons of the central nervous system. The aim of this study was to investigate the protective effect of SAA against apoptosis of rat cortical neurons induced by colchicine.

View Article and Find Full Text PDF

1. The aims of the present study were to investigate the mechanism(s) underlying the protective effect of carvedilol against neural damage. 2.

View Article and Find Full Text PDF

In eukaryotes, mitochondria are critical for cellular bioenergetics and mediating apoptosis. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) is an important regulator of mitochondrial biogenesis and function. However, the role of PGC-1alpha in neuronal apoptosis and its regulation by apoptotic pathway are still unknown.

View Article and Find Full Text PDF

The neuroprotective effects of (+/-)-catechin against toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were investigated in mice. MPTP caused the death of dopaminergic neurons in the substantia nigra and decreased the level of striatal dopamine. Additionally, MPTP increased the level of phospho-c-Jun, a known substrate of c-Jun N-terminal kinase (JNK) and caused a rapid activation of GSK-3beta, evidenced by the decrease in the level of phospho-Ser9 of GSK-3beta.

View Article and Find Full Text PDF

Objective: Suavissimoside R1 was isolated and identified as an active ingredient from Roots of Rubus parvifollus L, which exhibited protective effect on dopaminergic neurons against MPP+ toxicity.

Methods: The protective effects of crude extracts were investigated after mice were treated with 1-methyl4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). According to the protective effects of crude extracts, suavissimoside R1, one kind of triterpenoid saponin, was separated.

View Article and Find Full Text PDF

Nicotine enhances the function of learning and memory, but the underlying mechanism still remains unclear. Hippocampal long-term potentiation (LTP) is assumed to be a cellular mechanism of learning and memory. Our previous experiments showed that with the single pulses evoking 80% of the maximal population spike (PS) amplitude, nicotine (10 μmol/L) induced LTP-like response in the hippocampal CA1 region.

View Article and Find Full Text PDF

Colchicine is a microtubule interfering agent and is able to induce neural apoptosis. However, the intracellular pathway involved in its neurotoxicity is still unclear. In the present study, three of mitogen-activated protein kinases (MAPKs): p38, c-Jun N-terminal kinase (JNK) and extracellular-regulated kinase 1/2 (ERK1/2) were investigated in colchicine-induced apoptosis on cortical neurons for the first time.

View Article and Find Full Text PDF

Glycogen synthase kinase-3beta (GSK-3beta) is closely involved in neuronal apoptosis and pathogenesis of many neurodegenerative diseases, such as Alzheimer's disease. However, whether GSK-3beta mediates apoptosis of dopaminergic neurons in Parkinson's disease remains elusive. In this study, using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism models, we investigated whether MPTP induces apoptosis of dopaminergic neurons through a GSK-3beta-dependent pathway.

View Article and Find Full Text PDF

In cerebellar granule neurons, a BH3-only Bcl-2 family member, death protein 5/harakiri, is up-regulated in a JNK-dependent manner during apoptosis induced by potassium deprivation. However, it is not clear whether c-Jun is directly involved in the induction of dp5. Here, we showed that the up-regulation of dp5, but not fas ligand and bim, after potassium deprivation was suppressed by the expression of a dominant negative form of c-Jun.

View Article and Find Full Text PDF

Cerebellar granule neurons (CGNs) depend on potassium depolarization for survival and undergo apoptosis when deprived of depolarizing concentration of potassium. Extracellular signal-regulated kinases (ERK1/2) are thought to be activated in response to potassium depolarization and responsible for the activity-dependent survival in CGNs, but one recent study has revealed that ERK1/2 is activated by potassium deprivation and is required for apoptosis of CGNs. In this study we showed that ERK1/2 was inactivated, rather than activated, by potassium deprivation, indicating a lack of ERK1/2 involvement in potassium deprivation-induced apoptosis.

View Article and Find Full Text PDF

Bcl-2-interacting mediator of cell death (Bim), a proapoptotic BH3-only protein, plays a critical role in neuronal apoptosis. Cerebellar granule neurons (CGNs) depend on activity for their survival and undergo apoptosis when deprived of depolarizing concentration of KCl. While it has been proposed that the activation of c-Jun NH2-terminal protein kinase (JNK)/c-Jun pathway contributes to the upregulation of bim gene in neurons subjected to survival signaling withdrawal, here we show that neither inhibition of JNK activity nor expression of dominant-negative c-Jun suppresses the expression of bim gene induced by activity deprivation in CGNs.

View Article and Find Full Text PDF

Previous studies have demonstrated that c-Jun NH2-terminal protein kinase (JNK) plays a crucial role in neuronal apoptosis. Here, we report that indirubin-3'-oxime, a known effective inhibitor of cyclin-dependent kinases (CDKs) and glycogen synthase kinase 3-beta (GSK-3beta), has a significant inhibitory effect on JNK. Kinase assay showed that indirubin-3'-oxime directly inhibited the activity of all three isoforms of JNK (JNK1, and JNK3) in vitro, with half inhibition dose (IC50) of 0.

View Article and Find Full Text PDF

Increasing evidence suggests that c-Jun N-terminal kinase (JNK) is an important kinase mediating neuronal apoptosis in Parkinson's disease (PD) model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In order to study roles of JNK activity in neuronal apoptosis in this model, we blocked JNK activity in vivo using a specific inhibitor of JNK, SP600125. Our data showed that MPTP-induced phospho-c-Jun of substantial nigral neurons, caused apoptosis of dopaminergic neurons, and decreased the dopamine level in striatal area.

View Article and Find Full Text PDF

Aim: To investigate the effect of nicotine on beta1-adrenergic receptor (beta1-AR) in the hippocampal slice of rat.

Methods: Hippocampal slices (400 microm thick) were incubated in artificial cerebrospinal fluid (ACSF) previously saturated with 95 % O2 and 5 % CO2 at 28 degree for 120 min, and then incubated with nicotine 10 micromol/L for 30, 60, 90, and 120 min. mRNA of the beta1-adrenergic receptor was examined with semiquantitative reverse transcription-polymerase chain reaction (RT-PCR), and the protein level was measured by Western blot and RIA.

View Article and Find Full Text PDF

Aim: To investigate whether long-term potentiation (LTP) induced by nicotine and tetanic stimulation in the hippocampal CA1 region shares different mechanisms.

Methods: Extracellular population spikes of the pyramidal cell layer in the hippocampal CA1 region were recorded in vitro.

Results: LTP induced by the tetanic stimulation could be facilitated by nicotine 10 micromol/L, meanwhile, the tetanic stimulation did the same effect on LTP induced by nicotine 10 micromol/L.

View Article and Find Full Text PDF