Background: The effects of anesthetic drugs on postoperative cognitive function in children are not well defined and have not been experimentally addressed.
Aims: The present study aimed to examine the influence of propofol anesthesia exposure on nonaversive hippocampus-dependent learning and biochemical changes involved in memory process in the dorsal hippocampus, in peripubertal rats as the rodent model of periadolescence.
Methods: The intersession spatial habituation and the novel object recognition tasks were used to assess spatial and nonspatial, nonaversive hippocampus-dependent learning.
Dietary restriction (DR) is an important experimental paradigm for lifespan and healthspan extension, but its specific contribution regarding the type, onset, and duration are still debatable. This study was designed to examine the impact of different dietary protocols by assessing the behavioral changes during aging. We exposed male Wistar rats of various age to ad libitum (AL) or DR (60 per cent of AL daily intake) feeding regimens with different onsets.
View Article and Find Full Text PDFThe administration of dexamethasone, a synthetic glucocorticoid receptor agonist, has been reported to modulate cognitive performance in both animals and humans. In the present study, we demonstrate the effects of a single high dose of dexamethasone on the expression and distribution of synaptic plasticity-related proteins, growth-associated protein-43 (GAP-43) and synaptophysin, in the hippocampus of 6-, 12-, 18- and 24-month-old rats. Acute dexamethasone treatment significantly altered the expression of GAP-43 at the posttranslational level by modulating the levels of phosphorylated GAP-43 and proteolytic GAP-43-3 fragment.
View Article and Find Full Text PDFBackground: Propofol is commonly used in modern anesthesiology. Some findings suggest that it is highly addictive.
Aim: In this study it was examined whether propofol anesthesia exposure was able to induce behavioral alterations and brain molecular changes already described in addictive drug usage in peripubertal rats, during the onset of mid/periadolescence as a developmental period with increasing vulnerability to drug addiction.
Propofol is a general anesthetic commonly used in pediatric clinical practices. Experimental findings demonstrate that anesthetics induce widespread apoptosis and cognitive decline in a developing brain. Although anesthesia-mediated neurotoxicity is the most prominent during intense period of synaptogenesis, the effects of an early anesthesia exposure on the synapses are not well understood.
View Article and Find Full Text PDFA number of experimental studies have reported that exposure to common, clinically used anesthetics induce extensive neuroapoptosis and cognitive impairment when applied to young rodents, up to 2 weeks old, in phase of rapid synaptogenesis. Propofol is the most used general anesthetic in clinical practice whose mechanisms of neurotoxicity on the developing brain remains to be examined in depth. This study investigated effects of different exposures to propofol anesthesia on Fas receptor and Fas ligand expressions, which mediate proapoptotic and proinflammation signaling in the brain.
View Article and Find Full Text PDFThis study examined the influence of propofol anesthesia on the expression of activity-regulated molecules (BDNF and c-Fos) and synaptic plasticity markers (synaptophysin, GAP-43, drebrin) in the frontal cortex and thalamus of 7-day-old (P7) rats. Although these brain regions are the main targets of anesthetic action, they are contained in the cortico-striato-thalamo-cortical feedback loops, involved in naturally occurring and drug-induced psychoses. Therefore, functional integrity of these loops was examined in adolescent and adult rats through d-amphetamine-induced hyperactivity.
View Article and Find Full Text PDFPropofol anesthesia can trigger pro- and anti-apoptotic signaling pathways in the rat brain. In our previous work, we demonstrated that propofol causes widespread apoptotic neurodegeneration in 7-postnatal-day-old (PND7) but not in PND14 rat neurons. The mechanism responsible for these opposing outcomes is unknown, apparently linked to the specific stage of brain development.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
May 2015
Diminished glucocorticoid signaling is associated with an age-related decline in hippocampal functioning. In this study we demonstrate the effect of intermittent, every other day (EOD) feeding on the glucocorticoid hormone/glucocorticoid receptor (GR) system in the hippocampus of middle-aged (18-month-old) and aged (24-month-old) Wistar rats. In aged ad libitum-fed rats, a decrease in the level of total GR and GR phosphorylated at Ser(232) (pGR) was detected.
View Article and Find Full Text PDFDietary restriction (DR) exerts significant beneficial effects in terms of aging and age-related diseases in many organisms including humans. The present study aimed to examine the influence of long-term DR on the BDNF system at the transcriptional and translational levels in the cortex and hippocampus of middle-aged (12-month-old) and aged (24-month-old) male Wistar rats. The obtained results revealed that the DR upregulated the expression of exon-specific BDNF transcripts in both regions, followed by elevated levels of mBDNF only in the cortex in middle-aged animals.
View Article and Find Full Text PDFPreviously we observed that prolonged exposure to propofol anesthesia causes caspase-3- and calpain-mediated neuronal death in the developing brain. The present study examines the effects of propofol anesthesia on the expression of tumor necrosis factor-α (TNFα), pro-nerve growth factor (NGF), and their receptors in the cortex and the thalamus. We also investigated how propofol influences the expression of Akt and X-linked inhibitor of apoptosis (XIAP) expression, proteins that promote prosurvival pathways.
View Article and Find Full Text PDFGlioblastoma is the most frequent and malignant human brain tumor. High level of genomic instability detected in glioma cells implies that numerous genetic alterations accumulate during glioma pathogenesis. We investigated alterations in AP-PCR DNA profiles of 30 glioma patients, and detected specific changes in 11 genes not previously associated with this disease: LHFPL3, SGCG, HTR4, ITGB1, CPS1, PROS1, GP2, KCNG2, PDE4D, KIR3DL3, and INPP5A.
View Article and Find Full Text PDFThe objective of this study was to examine the effects of aging and long-term dietary restriction (DR) on the level of amyloid precursor protein (APP) and presenilin-1 (PS-1), proteins that are critically involved in Alzheimer's disease. Changes in mRNA and protein expression were assessed by real-time PCR and western blot analysis during aging and long-term DR in the cortex and hippocampus of 6-, 12-, 18-, and 24-month-old rats. Prominent regional changes in expression were observed in response to aging and DR.
View Article and Find Full Text PDFDisturbance of cholesterol homeostasis in the brain is coupled to age-related brain dysfunction. In the present work, we studied the relationship between aging and cholesterol metabolism in two brain regions, the cortex and hippocampus, as well as in the sera and liver of 6-, 12-, 18- and 24-month-old male Wistar rats. Using gas chromatography-mass spectrometry, we undertook a comparative analysis of the concentrations of cholesterol, its precursors and metabolites, as well as dietary-derived phytosterols.
View Article and Find Full Text PDFPurpose: Multi-drug resistance (MDR) is a major obstacle to successful cancer treatment. Therefore, in vitro models are necessary for the investigation of the phenotypic changes provoked by cytotoxic agents and more importantly for preclinical testing of new anticancer drugs.
Methods: We analyzed chromosomal, numerical, and structural changes after development of MDR, alterations in p53 and PTEN, single nucleotide polymorphisms (SNPs) in the mdr1 gene and corresponding protein expression of P-glycoprotein (P-gp) in three human MDR cancer cell lines: non-small cell lung carcinoma NCI-H460/R, colorectal carcinoma DLD1-TxR, and glioma U87-TxR.
Achieving an effective treatment of cancer is difficult, particularly when resistance to conventional chemotherapy is developed. P-glycoprotein (P-gp) activity governs multi-drug resistance (MDR) development in different cancer cell types. Identification of anti-cancer agents with the potential to kill cancer cells and at the same time inhibit MDR is important to intensify the search for novel therapeutic approaches.
View Article and Find Full Text PDFMost chemotherapeutics harm normal cells causing severe side effects and induce the development of resistance in cancer cells. Antimicrobial peptides (AMPs), recognized as anti-cancer agents, may overcome these limitations. The most studied mechanism underlying multi-drug resistance (MDR) is the over-expression of cell membrane transporter P-glycoprotein (P-gp), which extrudes a variety of hydrophobic drugs.
View Article and Find Full Text PDFNeurotrophins are established molecular mediators of neuronal plasticity in the adult brain. We analyzed the impact of aging on brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) protein isoforms, their receptors, and on the expression patterns of multiple 5' exon-specific BDNF transcripts in the rat cortex and hippocampus throughout the life span of the rat (6, 12, 18, and 24 months of age). ProNGF was increased during aging in both structures.
View Article and Find Full Text PDFThe purpose of this study was to detect the level of genomic instability and p53 alterations in anaplastic astrocytoma and primary glioblastoma patients, and to evaluate their impact on glioma pathogenesis and patients outcome. AP-PCR DNA profiling revealed two types of genetic differences between tumor and normal tissue: qualitative changes which represent accumulation of changes in DNA sequence and are the manifestation of microsatellite and point mutation instability (MIN-PIN) and quantitative changes which represent amplifications or deletions of existing chromosomal material and are the manifestation of chromosomal instability (CIN). Both types of alterations were present in all analyzed samples contributing almost equally to the total level of genomic instability, and showing no differences between histological subtypes.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a widespread cause of death and a major source of adult disability. Subsequent pathological events occurring in the brain after TBI, referred to as secondary injury, continue to damage surrounding tissue resulting in substantial neuronal loss. One of the hallmarks of the secondary injury process is microglial activation resulting in increased cytokine production.
View Article and Find Full Text PDFSeveral studies have revealed a role for neurotrophins in anesthesia-induced neurotoxicity in the developing brain. In this study we monitored the spatial and temporal expression of neurotrophic signaling molecules in the brain of 14-day-old (PND14) Wistar rats after the application of a single propofol dose (25 mg/kg i.p).
View Article and Find Full Text PDFJatrophane diterpenes were shown to be inhibitors of P-glycoprotein (P-gp). There are also evidences on their microtubule-interacting activity in cancer cells. We evaluated new anti-cancer characteristics of two jatrophane type compounds from Euphorbia dendroides.
View Article and Find Full Text PDFPaclitaxel (PTX) is used for treatment of wide range of solid tumors, but its efficacy is often limited by appearance of multidrug resistance (MDR). We explored the MDR induced by PTX in human colon cancer DLD1 and glioblastoma U87 cell lines. After confirmation of the cross-resistance to other anticancer agents in newly established DLD1-TxR and U87-TxR, we analyzed the mRNA expression of membrane transporters involved in MDR.
View Article and Find Full Text PDFFrom the Montenegrin spurge Euphorbia dendroides, seven new diterpenoids [jatrophanes (1-6) and a tigliane (7)] were isolated and their structures elucidated by spectroscopic techniques. The biological activity of the new compounds was studied against four human cancer cell lines. The most effective jatrophane-type compound (2) and its structurally closely related derivative (1) were evaluated for their interactions with paclitaxel and doxorubicin using a multi-drug-resistant cancer cell line.
View Article and Find Full Text PDFp16 and PTEN are tumor suppressors that are commonly inactivated in human cancers. Loss of each of these molecules is widely studied in lung cancer, including non-small cell lung carcinoma (NSCLC), its most common clinical form. However, the importance of their mutual alterations for NSCLC pathogenesis has been barely examined so far.
View Article and Find Full Text PDF