Publications by authors named "Ruysschaert J"

Gram-negative bacterial lipopolysaccharides (LPSs) trigger inflammatory reactions through Toll-like receptor 4 (TLR4) and prime myeloid cells for inflammasome activation. In phosphate-limited environments, bacteria reduce LPS and other phospholipid production and synthesize phosphorus-free alternatives such as amino-acid-containing lipids like the ornithine lipid (OL). This adaptive strategy conserves phosphate for other essential cellular processes and enhances bacterial survival in host environments.

View Article and Find Full Text PDF

Over the past decades, advances in lipid nanotechnology have shown that self-assembled lipid structures providing ease of preparation, chemical stability, and biocompatibility represent a landmark on the development of multidisciplinary technologies. Lipid nanotubes (LNTs) are a unique class of lipid self-assembled structures, bearing unique properties such as high-aspect ratio, tunable diameter size, and precise molecular recognition. They can be obtained either by the action of external factors to already formed vesicles or spontaneously, the latter depending strongly on subtle molecular features.

View Article and Find Full Text PDF

In certain bacteria, phosphatidylethanolamine lipids (PEL) get largely replaced by phosphate-free ornithine lipids (OL) under conditions of phosphate starvation. It has so far been unknown how much these two lipid types deviate in their physicochemical properties, and how strongly bacteria thus have to adapt in order to compensate for the difference. Here, we use differential scanning calorimetry, X-ray scattering, and X-ray fluorescence to investigate the properties of OL with saturated C14 alkyl chains in mono- and bilayers.

View Article and Find Full Text PDF

The inflammatory response is a complex regulated effector mechanism of the innate immune system that is initiated after tissue injury or infection. The NLRP3 inflammasome is an important initiator of inflammation by regulating the activation of caspase-1, the maturation of pro-inflammatory cytokines and the induction of pyroptotic cell death. Numerous studies demonstrate that the NLRP3 inflammasome could be modulated by lipids, existing a relation between lipids and the activation of different inflammatory processes.

View Article and Find Full Text PDF

Biomembrane hydration is crucial for understanding processes at biological interfaces. While the effect of the lipid headgroup has been studied extensively, the effect (if any) of the acyl chain chemical structure on lipid-bound interfacial water has remained elusive. We study model membranes composed of phosphatidylethanolamine (PE) and phosphatidylcholine (PC) lipids, the most abundant lipids in biomembranes.

View Article and Find Full Text PDF

DesK is a Histidine Kinase that allows to maintain lipid homeostasis in response to changes in the environment. It is located in the membrane, and has five transmembrane helices and a cytoplasmic catalytic domain. The transmembrane region triggers the phosphorylation of the catalytic domain as soon as the membrane lipids rigidify.

View Article and Find Full Text PDF

The two-component system DesK-DesR regulates the synthesis of unsaturated fatty acids in the soil bacteria . This system is activated at low temperature and maintains membrane lipid fluidity upon temperature variations. Here, we found that DesK-the transmembrane histidine kinase-also responds to pH and studied the mechanism of pH sensing.

View Article and Find Full Text PDF

Amyloid fibrils are composed of aggregated peptides or proteins in a fibrillar structure with a higher β-sheet content than in their native structure. To characterize them, we used an innovative tool that coupled infrared spectroscopy with atomic force microscopy (AFM-IR). With this method, we show that we can detect different individual aggregated species from oligomers to fibrils and study their morphologies by AFM and their secondary structures based on their IR spectra.

View Article and Find Full Text PDF

DesK is a Bacillus thermosensor kinase that is inactive at high temperatures but turns activated when the temperature drops below 25 °C. Surprisingly, the catalytic domain (DesKC) lacking the transmembrane region is more active at higher temperature, showing an inverted regulation regarding DesK. How does the transmembrane region control the catalytic domain, repressing activity at high temperatures, but allowing activation at lower temperatures? By designing a set of temperature minimized sensors that share the same catalytic cytoplasmic domain but differ in number and position of hydrogen-bond (H-bond) forming residues along the transmembrane helix, we are able to tune, invert or disconnect activity from the input signal.

View Article and Find Full Text PDF
Article Synopsis
  • A γ-irradiated bovine albumin serum nanoparticle was characterized using various techniques (like AFM and DLS) to determine its structure and stability at different pH levels over time.* -
  • The nanoparticle was functionalized with Folic Acid to enhance its role as a delivery system for the hydrophobic drug Emodin, showing more effectiveness against MCF-7 cancer cells when combined.* -
  • Besides being a good drug carrier, the nanoparticle proved to be non-toxic to cancer cells and could stimulate an immune response in macrophages, suggesting potential applications in vaccines and cancer treatments.*
View Article and Find Full Text PDF
Article Synopsis
  • The article originally published an incorrect version of Figure 2.
  • The correct version of Figure 2 is now provided below.
  • This correction aims to ensure the accuracy of the published research.
View Article and Find Full Text PDF

Cardiolipins (CLs) are tetra-acylated diphosphatidylglycerols found in bacteria, yeast, plants, and animals. In healthy mammals, CLs are unsaturated, whereas saturated CLs are found in blood cells from Barth syndrome patients and in some Gram-positive bacteria. Here, we show that unsaturated but not saturated CLs block LPS-induced NF-κB activation, TNF-α and IP-10 secretion in human and murine macrophages, as well as LPS-induced TNF-α and IL-1β release in human blood mononuclear cells.

View Article and Find Full Text PDF

DOTAP triggers Arabidopsis thaliana immunity and by priming the defense response is able to reduce bacterial pathogen attack. DOTAP is a cationic lipid widely used as a liposomal transfection reagent and it has recently been identified as a strong activator of the innate immune system in animal cells. Plants are sessile organisms and unlike mammals, that have innate and acquired immunity, plants possess only innate immunity.

View Article and Find Full Text PDF

Effective vaccine formulations consist of several components: an antigen carrier, the antigen, a stimulator of cellular immunity such as a Toll-like Receptors (TLRs) ligand, and a stimulator of humoral response such as an inflammasome activator. Here, we investigated the immunostimulatory and adjuvant properties of lipopolyamines, cationic lipids used as gene carriers. We identified new lipopolyamines able to activate both TLR2 and TLR4 and showed that lipopolyamines interact with TLRs via a mechanism different from the one used by bacterial ligands, activating a strong type-I IFN response, pro-inflammatory cytokines and IL-1β secretion.

View Article and Find Full Text PDF

Attenuated total reflection FTIR (ATR-FTIR) has been used for decades to study protein secondary structures. More recently, it reveals also to be an exquisite and sensitive tool to study and discriminate amyloid aggregates. Based on the analysis of specific spectral features of β-sheet structures, we present here a detailed protocol to differentiate oligomers vs.

View Article and Find Full Text PDF

Gliadin, an immunogenic protein present in wheat, is not fully degraded by humans and after the normal gastric and pancreatic digestion, the immunodominant 33-mer gliadin peptide remains unprocessed. The 33-mer gliadin peptide is found in human faeces and urine, proving not only its proteolytic resistance in vivo but more importantly its transport through the entire human body. Here, we demonstrate that 33-mer supramolecular structures larger than 220 nm induce the overexpression of nuclear factor kappa B (NF-κB) via a specific Toll-like Receptor (TLR) 2 and (TLR) 4 dependent pathway and the secretion of pro-inflammatory cytokines such as IP-10/CXCL10 and TNF-α.

View Article and Find Full Text PDF

Alzheimer's disease is the most common form of dementia that affects about 50 million of sufferers worldwide. A major role for the initiation and progression of Alzheimer's disease has been associated with the amyloid β-peptide (Aβ), which is a protease cleavage product of the amyloid precursor protein. The amyloid precursor protein is an integral membrane protein with a single transmembrane domain.

View Article and Find Full Text PDF
Article Synopsis
  • * The study reveals that di-C18 LPAs activate pro-inflammatory responses via Toll-like receptor 2 (TLR2), regardless of whether they are attached to nucleic acids, highlighting their role in immune activation.
  • * The findings suggest a need for better assessment of the inflammatory effects of transfection agents and advocate using molecular docking as a tool to design safer non-immunostimulatory options.
View Article and Find Full Text PDF

The misfolding and aggregation of the presynaptic protein α-synuclein (AS) into amyloid fibrils is pathognomonic of Parkinson's disease, though the mechanism by which this structural conversion occurs is largely unknown. Soluble oligomeric species that accumulate as intermediates in the process of fibril formation are thought to be highly cytotoxic. Recent studies indicate that oligomer-to-fibril AS transition plays a key role in cell toxicity and progression of neurodegeneration.

View Article and Find Full Text PDF

Adequate membrane fluidity is required for a variety of key cellular processes and in particular for proper function of membrane proteins. In most eukaryotic cells, membrane fluidity is known to be regulated by fatty acid desaturation and cholesterol, although some cells, such as insect cells, are almost devoid of sterol synthesis. We show here that insect and mammalian cells present similar microviscosity at their respective physiological temperature.

View Article and Find Full Text PDF

The 33-mer gliadin peptide, LQLQPF(PQPQLPY)3PQPQPF, is a highly immunogenic peptide involved in celiac disease and probably in other immunopathologies associated with gliadin. Herein, dynamic light scattering measurements showed that 33-mer, in the micromolar concentration range, forms polydisperse nano- and micrometer range particles in aqueous media. This behaviour is reminiscent of classical association of colloids and we hypothesized that the 33-mer peptide self-assembles into micelles that could be the precursors of 33-mer oligomers in water.

View Article and Find Full Text PDF

Parkinson's disease (PD) is an age-related movement disorder characterized by a progressive degeneration of dopaminergic neurons in the midbrain. Although the presence of amyloid deposits of α-synuclein (α-syn) is the main pathological feature, PD brains also present a severe permanent inflammation, which largely contributes to neuropathology. Although α-syn has recently been implicated in this process, the molecular mechanisms underlying neuroinflammation remain unknown.

View Article and Find Full Text PDF
Article Synopsis
  • - DiC14-amidine is a cationic lipid initially created for delivering nucleic acids, but it also acts as an agonist for the Toll-like receptor 4 (TLR4), showing different activity levels across species.
  • - While it activates TLR4 effectively in humans, mice, and cats, it has a weak effect in horses, leading researchers to investigate the structural components of TLR4 that influence this species-specific action.
  • - The study suggests diC14-amidine binds to unique areas of TLR4 that are not related to the traditional LPS-binding site, enhancing TLR4 dimerization in a manner dependent on myeloid differentiation 2 (MD-2) but independent of
View Article and Find Full Text PDF