Publications by authors named "Ruying Li"

Background: Hyperuricemia is a major risk factor for cardiovascular disease. This study aimed to investigate the relationship between the atherogenic index of plasma (AIP) and serum uric acid (SUA) levels, as well as the risk of hyperuricemia.

Methods: Utilizing data from the National Health and Nutrition Examination Survey (NHANES), we conducted a cross-sectional study involving 9,439 participants aged 18 years and above with complete triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) data.

View Article and Find Full Text PDF

The advancement of all-solid-state lithium metal batteries requires breakthroughs in solid-state electrolytes (SSEs) for the suppression of lithium dendrite growth at high current densities and high capacities (>3 mAh cm) and innovation of SSEs in terms of crystal structure, ionic conductivity and rigidness. Here we report a superionic conducting, highly lithium-compatible and air-stable vacancy-rich β-LiN SSE. This vacancy-rich β-LiN SSE shows a high ionic conductivity of 2.

View Article and Find Full Text PDF

The CO addition could promote anaerobic digestion, but the exploration on bioconversion mechanisms of exogenous CO in high-solid anaerobic digestion (HSAD) system is still insufficient. This study investigated the performance of a CO-added HSAD treating co-substrates of sewage sludge and food waste (FW). The maximum methane yield of 623.

View Article and Find Full Text PDF

The evolution of inorganic solid electrolytes has revolutionized the field of sustainable organic cathode materials, particularly by addressing the dissolution problems in traditional liquid electrolytes. However, current sulfide-based all-solid-state lithium-organic batteries still face challenges such as high working temperatures, high costs, and low voltages. Here, we design an all-solid-state lithium battery based on a cost-effective organic cathode material phenanthrenequinone (PQ) and a halide solid electrolyte LiZrCl.

View Article and Find Full Text PDF

Metal halide solid-state electrolytes have gained widespread attention due to their high ionic conductivities, wide electrochemical stability windows, and good compatibility with oxide cathode materials. The exploration of highly ionic conductive halide electrolytes is actively ongoing. Thus, understanding the relationship between composition and crystal structure can be a critical guide for designing better halide electrolytes, which still remains obscure for reliable prediction.

View Article and Find Full Text PDF

All-solid-state lithium metal batteries can address crucial challenges regarding insufficient battery cycling life and energy density. The demonstration of long-cycling dendrite-free all-solid-state lithium metal batteries requires precise tailoring of lithium-ion transport of solid-state electrolytes (SSEs). In this work, a proof of concept is reported for precise tailoring of lithium-ion transport of a halide SSE, LiInCl, including intragranular (within grains) but also intergranular (between grains) lithium-ion transport.

View Article and Find Full Text PDF

Attaining substantial areal capacity (>3 mAh/cm) and extended cycle longevity in all-solid-state lithium metal batteries necessitates the implementation of solid-state electrolytes (SSEs) capable of withstanding elevated critical current densities and capacities. In this study, we report a high-performing vacancy-rich LiNCl SSE demonstrating excellent lithium compatibility and atmospheric stability and enabling high-areal capacity, long-lasting all-solid-state lithium metal batteries. The LiNCl facilitates efficient lithium-ion transport due to its disordered lattice structure and presence of vacancies.

View Article and Find Full Text PDF

Accurate and dependable air quality forecasting is critical to environmental and human health. However, most methods usually aim to improve overall prediction accuracy but neglect the accuracy for unexpected incidents. In this study, a hybrid model was developed for air quality index (AQI) forecasting, and its performance during COVID-19 lockdown was analyzed.

View Article and Find Full Text PDF

Inorganic solid-state electrolytes (SSEs) have gained significant attention for their potential use in high-energy solid-state batteries. However, there is a lack of understanding of the underlying mechanisms of fast ion conduction in SSEs. Here, we clarify the critical parameters that influence ion conductivity in SSEs through a combined analysis approach that examines several representative SSEs (LiYCl, LiHoCl, and LiPSCl), which are further verified in the LiCl-InCl system.

View Article and Find Full Text PDF

Insertion-type compounds based on oxides and sulfides have been widely identified and well-studied as cathode materials in lithium-ion batteries. However, halides have rarely been used due to their high solubility in organic liquid electrolytes. Here, we reveal the insertion electrochemistry of VX (X=Cl, Br, I) by introducing a compatible halide solid-state electrolyte with a wide electrochemical stability window.

View Article and Find Full Text PDF

High-energy Ni-rich layered oxide cathode materials such as LiNiMnCoO (NMC811) suffer from detrimental side reactions and interfacial structural instability when coupled with sulfide solid-state electrolytes in all-solid-state lithium-based batteries. To circumvent this issue, here we propose a gradient coating of the NMC811 particles with lithium oxy-thiophosphate (LiPOS). Via atomic layer deposition of LiPO and subsequent in situ formation of a gradient LiPOS coating, a precise and conformal covering for NMC811 particles is obtained.

View Article and Find Full Text PDF

The revival of ternary halides Li-M-X (M = Y, In, Zr, etc.; X = F, Cl, Br) as solid-state electrolytes (SSEs) shows promise in realizing practical solid-state batteries due to their direct compatibility toward high-voltage cathodes and favorable room-temperature ionic conductivities. Most of the reported superionic halide SSEs have a structural pattern of [MCl] octahedra and generate a tetrahedron-assisted Li ion diffusion pathway.

View Article and Find Full Text PDF

Employing lithium-rich layered oxide (LLO) as the cathode of all-solid-state batteries (ASSBs) is highly desired for realizing high energy density. However, the poor kinetics of LLO, caused by its low electronic conductivity and significant oxygen-redox-induced structural degradation, has impeded its application in ASSBs. Here, the charge transfer kinetics of LLO is enhanced by constructing high-efficiency electron transport networks within solid-state electrodes, which considerably minimizes electron transfer resistance.

View Article and Find Full Text PDF

Sulfide electrolytes with high ionic conductivities are one of the most highly sought for all-solid-state lithium batteries (ASSLBs). However, the non-negligible electronic conductivities of sulfide electrolytes (≈10  S cm ) lead to electron smooth transport through the sulfide electrolyte pellets, resulting in Li dendrite directly depositing at the grain boundaries (GBs) and serious self-discharge. Here, a grain-boundary electronic insulation (GBEI) strategy is proposed to block electron transport across the GBs, enabling Li-Li symmetric cells with 30 times longer cycling life and Li-LiCoO full cells with three times lower self-discharging rate than pristine sulfide electrolytes.

View Article and Find Full Text PDF

The microbial electrolysis cell (MEC) is a promising technology for antibiotic removal in sewage sludge. Temperature and voltage are key operating factors, but information about their effects on antibiotic degradation in MECs is still limited. Therefore, the effects of the temperature and applied voltage on the degradation and solid-liquid distribution of antibiotics in MECs treating sewage sludge were investigated.

View Article and Find Full Text PDF

Ammonia nitrogen (NH-N) is closely related to the occurrence of cyanobacterial blooms and destruction of surface water ecosystems, and thus it is of great significance to develop predictive models for NH-N. However, traditional models cannot fully consider the complex nonlinear relationship between NH-N and various relative environmental parameters. The long short-term memory (LSTM) neural network can overcome this limitation.

View Article and Find Full Text PDF

Solid-state Li-S and Li-Se batteries are promising devices that can address the safety and electrochemical stability issues that arise from liquid-based systems. However, solid-state Li-Se/S batteries usually present poor cycling stability due to the high resistance interfaces and decomposition of solid electrolytes caused by their narrow electrochemical stability windows. Here, an integrated solid-state Li-Se battery based on a halide Li HoCl solid electrolyte with high ionic conductivity is presented.

View Article and Find Full Text PDF

The effects of Ca on membrane fouling and trace organic compounds (TrOCs) removal in an electric field-assisted microfiltration system were investigated in the presence of Na alone for comparison. In the electric field, negatively charged bovine serum albumin (BSA) migrated towards the anode far away from the membrane surface, resulting in a 42.9% transmembrane pressure (TMP) reduction in the presence of Na at 1.

View Article and Find Full Text PDF

Numerous efforts are made to improve the reversible capacity and long-term cycling stability of Li-S cathodes. However, they are susceptible to irreversible capacity loss during cycling owing to shuttling effects and poor Li transport under high sulfur loading. Herein, a physically and chemically enhanced lithium sulfur cathode is proposed to address these challenges.

View Article and Find Full Text PDF

Single-atom catalysts (SACs) have been applied in many fields due to their superior catalytic performance. Because of the unique properties of the single-atom-site, using the single atoms as catalysts to synthesize SACs is promising. In this work, we have successfully achieved Co SAC using Pt atoms as catalysts.

View Article and Find Full Text PDF

Applying an electric field in the membrane filtration was an effective method to alleviate membrane fouling and enhance the trace organic compounds (TrOCs) removal. The secondary effluent of a municipal wastewater treatment plant was used as feed water to evaluate the performance of the electric field coupled microfiltration system. Applying a 1.

View Article and Find Full Text PDF

Solid-state halide electrolytes have gained revived research interests owing to their high ionic conductivity and high-voltage stability. However, synthesizing halide electrolytes from a liquid phase is extremely challenging because of the vulnerability of metal halides to hydrolysis. In this work, ammonium-assisted wet chemistry is reported to synthesize various solid-state halide electrolytes with an exceptional ionic conductivity (>1 microsiemens per centimeter).

View Article and Find Full Text PDF

Lithium-sulfur (Li-S) batteries are drawing huge attention as attractive chemical power sources. However, traditional ether-based solvents (DME/DOL) suffer from safety issues at high temperatures and serious parasitic reactions occur between the Li metal anodes and soluble lithium polysulfides (LiPSs). Herein, we propose a polysulfide-suppressed and flame-retardant electrolyte operated at high temperatures by introducing an inert diluent 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl (TTE) into the high-concentration electrolyte (HCE).

View Article and Find Full Text PDF

Black phosphorus (BP) is a promising anode material in lithium-ion batteries (LIBs) owing to its high electrical conductivity and capacity. However, the huge volume change of BP during cycling induces rapid capacity fading. In addition, the unclear electrochemical mechanism of BP hinders the development of rational designs and preparation of high-performance BP-based anodes.

View Article and Find Full Text PDF

Coupling electric field, coagulation, and powdered activated carbon (PAC) adsorption in the microfiltration (MF) process was an effective strategy for membrane fouling alleviation and trace organic compounds (TrOCs) elimination. In the electric field, the surface charges of bovine serum albumin (BSA) molecules and kaolin particles distributed along the direction of the electric field and formed electric dipoles, which lowered electrostatic repulsion between BSA-BSA, BSA-kaolin, and kaolin-kaolin, resulting in enhanced particle aggregation and turbidity reduction. Electrophoretic migration also strengthened the interaction between particles and polyaluminum chloride (PACl).

View Article and Find Full Text PDF