Materials (Basel)
August 2022
In this work, the precipitates in Ti-Mo-V steel were systematically characterized by high-resolution transmission electron microscopy (HRTEM). The thermodynamics and kinetics of precipitates in Ti-Mo and Ti-Mo-V steels were theoretically analyzed, and the effect of vanadium on the precipitation behavior was clarified. The results showed that the precipitation volume fraction of the Ti-Mo-V steel was significantly higher than that of Ti-Mo steel.
View Article and Find Full Text PDFWe present here the complete genome sequence of Lactococcus lactis strain 14B4, isolated from almond drupes in northern California. This strain was observed to inhibit the growth of Salmonella enterica serotype Poona strain RM3363 .
View Article and Find Full Text PDFHexavalent chromium, Cr(VI), is a widespread and toxic groundwater contaminant. Reductive immobilization to Cr(III) is a treatment option, but its success depends on the long-term potential for reduced chromium precipitates to remain immobilized under oxidizing conditions. In this unique long-term study, aquifer sediments subjected to reductive Cr(VI) immobilization under different biogeochemical regimes were tested for their susceptibility to reoxidation.
View Article and Find Full Text PDFMicrobially mediated reductive immobilization of chromium is a possible remediation technique for sites contaminated with Cr(VI). This study is part of a broader effort investigating the biogeochemical mechanisms for Cr(VI) reduction in Hanford 100H aquifer sediments using flow-through laboratory columns. It had previously been shown that reduced chromium in the solid phase was in the form of freshly precipitated mixed-phase Cr(III)-Fe(III) (hydr)oxides, irrespective of the biogeochemical conditions in the columns.
View Article and Find Full Text PDFIn this study of reductive chromium immobilization, we found that flow-through columns constructed with homogenized aquifer sediment and continuously infused with lactate, chromate, and various native electron acceptors diverged to have very different Cr(VI)-reducing biogeochemical regimes characterized by either denitrifying or fermentative conditions (as indicated by effluent chemical data, 16S rRNA pyrotag data, and metatranscriptome data). Despite the two dramatically different biogeochemical environments that evolved in the columns, these regimes created similar Cr(III)-Fe(III) hydroxide precipitates as the predominant Cr(VI) reduction product, as characterized by micro-X-ray fluorescence and micro-X-ray absorption near-edge structure analysis. We discuss two conflicting scenarios of microbially mediated formation of Cr(III)-Fe(III) precipitates, each of which is both supported and contradicted by different lines of evidence: (1) enzymatic reduction of Cr(VI) to Cr(III) followed by coprecipitation of Cr(III) and Fe(III) and (2) both regimes generated at least small amounts of Fe(II), which abiotically reduced Cr(VI) to form a Cr-Fe precipitate.
View Article and Find Full Text PDFPelosinus spp. are fermentative firmicutes that were recently reported to be prominent members of microbial communities at contaminated subsurface sites in multiple locations. Here we report metabolic characteristics and their putative genetic basis in Pelosinus sp.
View Article and Find Full Text PDFWe studied Cr isotopic fractionation during Cr(VI) reduction by Pseudomonas stutzeri strain RCH2. Despite the fact that strain RCH2 reduces Cr(VI) cometabolically under both aerobic and denitrifying conditions and at similar specific rates, fractionation was markedly different under these two conditions (ε was ∼2‰ aerobically and ∼0.4‰ under denitrifying conditions).
View Article and Find Full Text PDFCr(VI) is a widespread groundwater contaminant that is a potent toxin, mutagen, and carcinogen. In situ reductive immobilization is a favored approach for Cr(VI) bioremediation, and Cr(VI) reduction has been reported in a variety of aerobic, facultative, and anaerobic bacteria, including a number of pseudomonads. However, studies comparing Cr(VI) reduction under aerobic and denitrifying conditions in the same organism are not available.
View Article and Find Full Text PDFFour strains of thermophilic cellulolytic anaeobic bacteria were isolated from fresh feces, heat compost, cellulolytic mixed culture with a method based on adherence of cellulolytic bacteria to cellulose. The cells of isolates were straight or slightly curved rods that were 0.4 micron-0.
View Article and Find Full Text PDF