Alginic acid was converted to a variety of ammonium alginate derivatives carrying diverse chemical cargo such as analgesics, antibiotics, and enzymes. These functional polymers could be fashioned into nanofibrous mats by electrostatic spinning. The therapeutic payload could be released in functional form by a simple ion exchange mechanism.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2013
This article reports the first systematic study on the quantitative relationship between the process parameters of solution concentration ratio, structure, and physical and optical properties of ZnO nanowires grown on cotton surfaces. To develop a fundamental understanding concerning the process-structure-activity relations, we grew a series of well-defined, radially oriented, highly dense, and uniform single-crystalline ZnO nanorods and nanoneedles on cotton surfaces by a simple and inexpensive two-step optimized hydrothermal process at a relatively low temperature. This process involves seed treatment of a cotton substrate with ZnO nanocrystals that will serve as the nucleation sites for subsequent anisotropic growth of single crystalline ZnO nanowires.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2012
We report a simple and effective route for fabricating branched hierarchical nanostructures of TiO(2)/ZnO by combining electrospinning and the low-temperature hydrothermal growth technique. First, TiO(2) nanofibers were prepared by electrospinning polystyrene (PS)/titanium tetraisopropoxide (Ti(OiPr)(4)) solutions onto glass substrates followed by calcination at 500 °C. The electrospun TiO(2) nanofibers served as a 3D primary platform upon which the branched, highly uniform, and dense secondary ZnO nanorods were hydrothermally grown.
View Article and Find Full Text PDF