Surface micropatterns are relevant instruments for the in vitro analysis of cell cultures in non-conventional planar conditions. In this work, two semiconductors (Si and TiO2) have been micropatterned by combined ion-beam/chemical-etching processes leading to selective areas bearing nanorough features. A preferential affinity of human mesenchymal stem cells (hMSCs) for planar areas versus nanotopographic ones is observed.
View Article and Find Full Text PDFWe propose a ground-breaking approach by an upside-down vision of the Au/TiO2 nano-system in order to obtain an enhanced photocatalytic response. The system was synthesized by wrapping Au nanoparticles (∼8 nm mean diameter) with a thin layer of TiO2 (∼4 nm thick). The novel idea of embedding Au nanoparticles with titanium dioxide takes advantage of the presence of metal nanoparticles, in terms of electron trapping, without losing any of the TiO2 exposed surface, so as to favor the photocatalytic performance of titanium dioxide.
View Article and Find Full Text PDFA limited number of Anisotropic Magnetoresistive (AMR) commercial-off-the-shelf (COTS) magnetic sensors of the HMC series by Honeywell, with and without integrated front-end electronics, were irradiated with gamma rays up to a total irradiation dose of 200 krad (Si), following the ESCC Basic Specification No. 22900. Due to the magnetic cleanliness required for these tests a special set-up was designed and successfully employed.
View Article and Find Full Text PDF