Publications by authors named "Ruxandra F Sirbulescu"

Amyotrophic lateral sclerosis (ALS) is an orphan neurodegenerative disease. Immune system dysregulation plays an essential role in ALS onset and progression. Our preclinical studies have shown that the administration of exogenous allogeneic B cells improves outcomes in murine models of skin and brain injury through a process termed pligodraxis, in which B cells adopt an immunoregulatory and neuroprotective phenotype in an injured environment.

View Article and Find Full Text PDF

B lymphocytes are immune cells studied predominantly in the context of peripheral humoral immune responses against pathogens. Evidence has been accumulating in recent years on the diversity of immunomodulatory functions that B cells undertake, with particular relevance for pathologies of the central nervous system (CNS). This review summarizes current knowledge on B cell populations, localization, infiltration mechanisms, and function in the CNS and associated tissues.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) remains a major cause of death and severe disability worldwide. We found previously that treatment with exogenous naïve B cells was associated with structural and functional neuroprotection after TBI. Here, we used a mouse model of unilateral controlled cortical contusion TBI to investigate cellular mechanisms of immunomodulation associated with intraparenchymal delivery of mature naïve B lymphocytes at the time of injury.

View Article and Find Full Text PDF
Article Synopsis
  • Injuries to the central nervous system (like the brain and spine) are complicated and hard to treat because they cause inflammation that can harm the area even more.
  • After an injury, the body’s immune system gets confused and keeps causing more problems, leading to long-term damage.
  • Recent studies are looking at B lymphocytes (a type of immune cell) to see if they can help control inflammation and improve healing after these injuries.
View Article and Find Full Text PDF

In adult mammals, spontaneous repair after spinal cord injury (SCI) is severely limited. By contrast, teleost fish successfully regenerate injured axons and produce new neurons from adult neural stem cells after SCI. The molecular mechanisms underlying this high regenerative capacity are largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Diabetic foot ulceration (DFU) is a serious problem for people with diabetes, and scientists are trying to understand it better.
  • Researchers studied over 174,000 cells from different parts of the body to learn more about how these wounds heal.
  • They found special cells that help wounds heal and noticed that healing is linked to certain types of immune cells, which could lead to new ways to treat DFUs.
View Article and Find Full Text PDF

Exogenously applied mature naïve B220 /CD19 /IgM /IgD B cells are strongly protective in the context of tissue injury. However, the mechanisms by which B cells detect tissue injury and aid repair remain elusive. Here, we show in distinct models of skin and brain injury that MyD88-dependent toll-like receptor (TLR) signaling through TLR2/6 and TLR4 is essential for the protective benefit of B cells in vivo, while B cell-specific deletion of MyD88 abrogated this effect.

View Article and Find Full Text PDF

Cathepsin K deficiency in male mice (Ctsk) results in decreased numbers of hippocampal astrocytes and altered neuronal patterning as well as learning and memory deficits. Additionally, cathepsin K carries essential roles in the thyroid gland where it contributes to the liberation of thyroid hormones (TH). Because TH are essential for brain development, in particular for the cerebellum, we investigated whether cathepsin K's function in the thyroid is directly linked to the brain phenotype of Ctsk mice.

View Article and Find Full Text PDF

Cerebral contusion causes neurological dysfunction mediated in part by inflammatory responses to injury. B lymphocytes are dynamic regulators of the immune system that have not been systematically studied in traumatic brain injury (TBI). We showed previously that topically applied mature B cells have immunomodulatory properties and strongly promote tissue regeneration, including cutaneous nerve growth, in acute and chronic skin wounds.

View Article and Find Full Text PDF

Pancreatic β-cell replacement by islet transplantation for the treatment of type 1 diabetes (T1D) is currently limited by donor tissue scarcity and the requirement for lifelong immunosuppression. The advent of in vitro differentiation protocols for generating functional β-like cells from human pluripotent stem cells, also referred to as SC-β cells, could eliminate these obstacles. To avoid the need for immunosuppression, alginate-microencapsulation is widely investigated as a safe path to β-cell replacement.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers found that CW NIR laser treatment activates mast cells, promotes an immunostimulatory environment, and guides dendritic cell migration without causing long-lasting inflammation.
  • * These findings suggest that NIR lasers are a safe and effective method to modulate skin immune responses, paving the way for further investigation into their use for various immune-related skin conditions.
View Article and Find Full Text PDF

Chronic wounds affect 12-15% of patients with diabetes and are associated with a drastic decrease in their quality of life. Here, we demonstrate that purified mature naive B220 /CD19 /IgM /IgD B cells improve healing of acute and diabetic murine wounds after a single topical application. B cell treatment significantly accelerated acute wound closure by 2-3 days in wild-type mice and 5-6 days in obese diabetic mice.

View Article and Find Full Text PDF

Brief exposure of skin to near-infrared (NIR) laser light has been shown to augment the immune response to intradermal vaccination and thus act as an immunologic adjuvant. Although evidence indicates that the NIR laser adjuvant has the capacity to activate innate subsets including dendritic cells (DCs) in skin as conventional adjuvants do, the precise immunological mechanism by which the NIR laser adjuvant acts is largely unknown. In this study we sought to identify the cellular target of the NIR laser adjuvant by using an established mouse model of intradermal influenza vaccination and examining the alteration of responses resulting from genetic ablation of specific DC populations.

View Article and Find Full Text PDF

The knifefish Apteronotus leptorhynchus exhibits indeterminate growth throughout adulthood. This phenomenon extends to the spinal cord, presumably through the continuous addition of new neurons and glial cells. However, little is known about the developmental dynamics of cells added during adult growth.

View Article and Find Full Text PDF

Among the cellular processes that follow injury to the central nervous system, glial scar formation is thought to be one of the major factors that prevent regeneration. In regeneration-competent organisms, glial scar formation has been a matter of controversy. We addressed this issue by examining the glial population after spinal cord injury in a model of regeneration competency, the knifefish Apteronotus leptorhynchus.

View Article and Find Full Text PDF

Background: The brown ghost knifefish (Apteronotus leptorhynchus) is a weakly electric teleost fish of particular interest as a versatile model system for a variety of research areas in neuroscience and biology. The comprehensive information available on the neurophysiology and neuroanatomy of this organism has enabled significant advances in such areas as the study of the neural basis of behavior, the development of adult-born neurons in the central nervous system and their involvement in the regeneration of nervous tissue, as well as brain aging and senescence. Despite substantial scientific interest in this species, no genomic resources are currently available.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) are a family of highly conserved zinc-dependent proteases involved in both development and pathogenesis. The present study examines the role of MMP-2 (gelatinase A) and MMP-9 (gelatinase B) in adult neurogenesis, using the corpus cerebelli, a subdivision of the cerebellum, of knifefish (Apteronotus leptorhynchus) as a model system. Transcripts of five isoforms of these gelatinases were identified in the central nervous system of this species.

View Article and Find Full Text PDF

Many disorders of the CNS are characterized by a massive loss of neurons. A promising therapeutic strategy to cure such conditions is based on the activation of endogenous stem cells. Implementation of this strategy will benefit from a better understanding of stem cell dynamics and the local CNS microenvironment in regeneration-competent vertebrate model systems.

View Article and Find Full Text PDF

Adult neurogenesis has been described in dozens of brain regions in teleost fish, with the largest number of new neurons being generated in the cerebellum. Here, we characterized the cerebellar neural stem/progenitor cells (NSPCs) in the brown ghost knifefish (Apteronotus leptorhynchus), an established model system of adult neurogenesis. The majority of the new cerebellar cells arise from neurogenic niches located medially, at the interface of the dorsal/ventral molecular layers and the granular layer.

View Article and Find Full Text PDF

Neural stem/progenitor cells in the neurogenic niches of the adult brain are widely assumed to give rise predominantly to neurons, rather than glia. Here, we performed a quantitative analysis of the resident neural progenitors and their progeny in the adult pacemaker nucleus (Pn) of the weakly electric fish Apteronotus leptorhynchus. Approximately 15% of all cells in this brainstem nucleus are radial glia-like neural stem/progenitor cells.

View Article and Find Full Text PDF

Sexually dimorphic behaviors develop under the influence of sex steroids, which induce reversible changes in the underlying neural network of the brain. However, little is known about the proteins that mediate these activational effects of sex steroids. Here, we used a proteomics approach for large-scale identification of proteins involved in the development of a sexually dimorphic behavior, the electric organ discharge of brown ghost knifefish, Apteronotus leptorhynchus.

View Article and Find Full Text PDF

Adult neurogenesis, the generation of new neurons in the adult central nervous system, is a reported feature of all examined vertebrate species. However, a dramatic decline in the rates of cell proliferation and neuronal differentiation occurs in mammals, typically starting near the onset of sexual maturation. In the present study, we examined possible age-related changes associated with adult neurogenesis in the brain of brown ghost knifefish (Apteronotus leptorhynchus), a teleost fish distinguished by its enormous neurogenic potential.

View Article and Find Full Text PDF
Article Synopsis
  • Traumatic brain and spinal cord injuries can be very serious and cause death or long-term problems for people.
  • Scientists are studying fish that can heal and regrow nervous tissue to learn how to help humans recover from similar injuries.
  • The chapter explains how these fish can repair their brains and nervous systems, what helps them do this, and how understanding their healing could help develop new treatments for people.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: