Publications by authors named "Ruxandra Bachmann-Gagescu"

Ciliopathies are a group of neurodevelopmental disorders characterized by the dysfunction of the primary cilium. This small protrusion from most cells of our body serves as a signaling hub for cell-to-cell communication during development. Cell proliferation, differentiation, migration, and neural circuit formation have been demonstrated to depend on functional primary cilia.

View Article and Find Full Text PDF

Joubert Syndrome (JBTS) is a neurodevelopmental ciliopathy defined by a highly specific midbrain-hindbrain malformation, variably associated with additional neurological features. JBTS displays prominent genetic heterogeneity with >40 causative genes that encode proteins localising to the primary cilium, a sensory organelle that is essential for transduction of signalling pathways during neurodevelopment, among other vital functions. JBTS proteins localise to distinct ciliary subcompartments, suggesting diverse functions in cilium biology.

View Article and Find Full Text PDF

Cilia defects lead to scoliosis in zebrafish, but the underlying pathogenic mechanisms are poorly understood and may diverge depending on the mutated gene. Here, we dissected the mechanisms of scoliosis onset in a zebrafish mutant for the gene encoding a ciliary transition zone protein. mutant fish developed scoliosis with near-total penetrance but asynchronous onset in juveniles.

View Article and Find Full Text PDF

CRISPR-based genome engineering holds enormous promise for basic science and therapeutic applications. Integrating and editing DNA sequences is still challenging in many cellular contexts, largely due to insufficient control of the repair process. We find that repair at the genome-cargo interface is predictable by deep-learning models and adheres to sequence context specific rules.

View Article and Find Full Text PDF
Article Synopsis
  • - This study examines the link between rare variants in the cullin-3 ubiquitin ligase (CUL3) gene and neurodevelopmental disorders (NDDs), gathering data from multiple centers to explore genetic mutations and their clinical impacts.
  • - Researchers identified 37 individuals with CUL3 variants, most of which result in loss-of-function (LoF), leading to intellectual disabilities and possibly autistic traits; specific mechanisms affecting protein stability were also investigated.
  • - The findings enhance the understanding of NDDs associated with CUL3 mutations, suggesting that LoF variants are the main cause, which could help inform future diagnostics and treatment strategies.
View Article and Find Full Text PDF
Article Synopsis
  • - Contribution of splicing variants to inherited disease diagnostics is reported to be <10%, likely underestimating their impact due to challenges in prediction, need for functional analysis, and detection issues with existing technologies.
  • - This study aimed to evaluate Nanopore sequencing for identifying and quantifying splicing variants in patients with inherited retinal dystrophies, by using 19 selected candidate variants.
  • - The results showed that 13 of the variants caused abnormal splicing events, and Nanopore sequencing provided a reliable way to identify and quantify these low-abundance transcripts, which traditional methods might miss.
View Article and Find Full Text PDF

The purpose of this study was to assess the added diagnostic value of whole genome sequencing (WGS) for patients with inherited retinal diseases (IRDs) who remained undiagnosed after whole exome sequencing (WES). WGS was performed for index patients in 66 families. The datasets were analyzed according to GATK's guidelines.

View Article and Find Full Text PDF

Vision is arguably our most important sense, and its loss brings substantial limitations to daily life for affected individuals. Light is perceived in retinal photoreceptors (PRs), which are highly specialized neurons subdivided into several compartments with distinct functions. The outer segments (OSs) of photoreceptors represent highly specialized primary ciliary compartments hosting the phototransduction cascade, which transforms incoming light into a neuronal signal.

View Article and Find Full Text PDF

Vision is one of our dominant senses and its loss has a profound impact on the life quality of affected individuals. Highly specialized neurons in the retina called photoreceptors convert photons into neuronal responses. This conversion of photons is mediated by light sensitive opsin proteins, which are found in the outer segments of the photoreceptors.

View Article and Find Full Text PDF

Neurodevelopmental disorders (NDDs) result from highly penetrant variation in hundreds of different genes, some of which have not yet been identified. Using the MatchMaker Exchange, we assembled a cohort of 27 individuals with rare, protein-altering variation in the transcriptional coregulator ZMYM3, located on the X chromosome. Most (n = 24) individuals were males, 17 of which have a maternally inherited variant; six individuals (4 male, 2 female) harbor de novo variants.

View Article and Find Full Text PDF
Article Synopsis
  • Next generation sequencing (NGS) can identify carrier status for rare recessive disorders, helping couples understand their reproductive risks, in line with ACMG recommendations for broad carrier screening based on gene frequency.
  • In a study of 118 ciliopathy genes, researchers found that 20% of healthy individuals and 50% carried variants of uncertain significance (VUS), complicating the interpretation of NGS results due to limitations in variant classification criteria.
  • The findings highlight a need for better understanding of gene-specific variant patterns and emphasize the importance of transparent genetic counseling to inform individuals about the challenges and uncertainties inherent in NGS-based carrier screening.
View Article and Find Full Text PDF

Cilia are quasi-ubiquitous microtubule-based sensory organelles, which play vital roles in signal transduction during development and cell homeostasis. Dysfunction of cilia leads to a group of Mendelian disorders called ciliopathies, divided into different diagnoses according to clinical phenotype constellation and genetic causes. Joubert syndrome (JBTS) is a prototypical ciliopathy defined by a diagnostic cerebellar and brain stem malformation termed the "Molar Tooth Sign" (MTS), in addition to which patients display variable combinations of typical ciliopathy phenotypes such as retinal dystrophy, fibrocystic renal disease, polydactyly or skeletal dystrophy.

View Article and Find Full Text PDF

A hallmark of meiosis is chromosomal pairing, which requires telomere tethering and rotation on the nuclear envelope through microtubules, driving chromosome homology searches. Telomere pulling toward the centrosome forms the "zygotene chromosomal bouquet." Here, we identified the "zygotene cilium" in oocytes.

View Article and Find Full Text PDF

Primary cilia are key sensory organelles whose dysfunction leads to ciliopathy disorders such as Bardet-Biedl syndrome (BBS). Retinal degeneration is common in ciliopathies, since the outer segments (OSs) of photoreceptors are highly specialized primary cilia. BBS1, encoded by the most commonly mutated BBS-associated gene, is part of the BBSome protein complex.

View Article and Find Full Text PDF

Mutations in CEP290 (also known as NPHP6), a large multidomain coiled coil protein, are associated with multiple cilia-associated syndromes. Over 130 CEP290 mutations have been linked to a wide spectrum of human ciliopathies, raising the question of how mutations in a single gene cause different disease syndromes. In zebrafish, the expressivity of cep290 deficiencies were linked to the type of genetic ablation: acute cep290 morpholino knockdown caused severe cilia-related phenotypes, whereas deficiencies in a CRISPR/Cas9 genetic mutant were restricted to photoreceptor defects.

View Article and Find Full Text PDF

Joubert syndrome (JBTS) is a recessive neurodevelopmental ciliopathy characterized by a pathognomonic hindbrain malformation. All known JBTS genes encode proteins involved in the structure or function of primary cilia, ubiquitous antenna-like organelles essential for cellular signal transduction. Here, we used the recently identified JBTS-associated protein armadillo repeat motif-containing 9 (ARMC9) in tandem-affinity purification and yeast 2-hybrid screens to identify a ciliary module whose dysfunction underlies JBTS.

View Article and Find Full Text PDF

The molecular cause of the majority of rare autosomal recessive disorders remains unknown. Consanguinity due to extensive homozygosity unravels many recessive phenotypes and facilitates the detection of novel gene-disease links. Here, we report two siblings with phenotypic signs, including intellectual disability (ID), developmental delay and microcephaly from a Pakistani consanguineous family in which we have identified homozygosity for p(Tyr103His) in the PSMB1 gene (Genbank NM_002793) that segregated with the disease phenotype.

View Article and Find Full Text PDF

Joubert syndrome (JS) is a recessive neurodevelopmental disorder defined by a characteristic cerebellar and brainstem malformation recognizable on axial brain magnetic resonance imaging as the "Molar Tooth Sign". Although defined by the neurological features, JS is associated with clinical features affecting many other organ systems, particularly progressive involvement of the retina, kidney, and liver. JS is a rare condition; therefore, many affected individuals may not have easy access to subspecialty providers familiar with JS (e.

View Article and Find Full Text PDF

Light sensation occurs in photoreceptor outer segments (OS), which derive from highly specialized primary cilia, based on structural and molecular similarities. Ciliary dysfunction causes ciliopathies, in which retinal degeneration is common. The connecting cilium (CC) is the obligate passage for proteins moving between ciliary and cellular compartment, controlling the correct distribution of proteins on either side of its barrier.

View Article and Find Full Text PDF

Recent recognition of the key role of primary cilia in orchestrating human development and of the dire consequences of their dysfunction on human health has placed this small organelle in the spotlight. While the causal link between mutations in ciliary genes and central nervous system malformations and dysfunction is well established, the mechanisms by which primary cilia dysfunction acts on development and function of the CNS remain partly unknown. The recent article by Bashford and Subramanian in The Journal of Pathology describes a new mouse model for the neurodevelopmental ciliopathy Joubert syndrome, supporting a role for ciliary-mediated Hedgehog signaling on proliferation, survival, and differentiation of cerebellar granule cell progenitors.

View Article and Find Full Text PDF

Developmental delay and intellectual disability (DD and ID) are heterogeneous phenotypes that arise in many rare monogenic disorders. Because of this rarity, developing cohorts with enough individuals to robustly identify disease-associated genes is challenging. Social-media platforms that facilitate data sharing among sequencing labs can help to address this challenge.

View Article and Find Full Text PDF

Purpose: Microcephaly is a sign of many genetic conditions but has been rarely systematically evaluated. We therefore comprehensively studied the clinical and genetic landscape of an unselected cohort of patients with microcephaly.

Methods: We performed clinical assessment, high-resolution chromosomal microarray analysis, exome sequencing, and functional studies in 62 patients (58% with primary microcephaly [PM], 27% with secondary microcephaly [SM], and 15% of unknown onset).

View Article and Find Full Text PDF

Background: Deleterious variants in the voltage-gated sodium channel type 2 (Na1.2) lead to a broad spectrum of phenotypes ranging from benign familial neonatal-infantile epilepsy (BFNIE), severe developmental and epileptic encephalopathy (DEE) and intellectual disability (ID) to autism spectrum disorders (ASD). Yet, the underlying mechanisms are still incompletely understood.

View Article and Find Full Text PDF