Background: Chordomas are rare cancers from the axial skeleton which present a challenging clinical management with limited treatment options due to their anatomical location. In recent years, a few clinical trials demonstrated that chordomas can respond to immunotherapy. However, an in-depth portrayal of chordoma immunity and its association with clinical parameters is still lacking.
View Article and Find Full Text PDFPurpose: The availability of (neo)antigens and the infiltration of tumors by (neo)antigen-specific T cells are crucial factors in cancer immunotherapy. In this study, we aimed to investigate the targetability of (neo)antigens in advanced progessive melanoma and explore the potential for continued T-cell-based immunotherapy.
Experimental Design: We examined a cohort of eight patients with melanoma who had sequential metastases resected at early and later time points.
Background: Expression of CD103 and CD39 has been found to pinpoint tumor-reactive CD8 T cells in a variety of solid cancers. We aimed to investigate whether these markers specifically identify neoantigen-specific T cells in colorectal cancers (CRCs) with low mutation burden.
Experimental Design: Whole-exome and RNA sequencing of 11 mismatch repair-proficient (MMR-proficient) CRCs and corresponding healthy tissues were performed to determine the presence of putative neoantigens.
Background: The efficacy of checkpoint blockade immunotherapies in colorectal cancer is currently restricted to a minority of patients diagnosed with mismatch repair-deficient tumors having high mutation burden. However, this observation does not exclude the existence of neoantigen-specific T cells in colorectal cancers with low mutation burden and the exploitation of their anti-cancer potential for immunotherapy. Therefore, we investigated whether autologous neoantigen-specific T cell responses could also be observed in patients diagnosed with mismatch repair-proficient colorectal cancers.
View Article and Find Full Text PDFMultiplex immunophenotyping technologies are indispensable for a deeper understanding of biological systems. Until recently, high-dimensional cellular analyses implied the loss of tissue context as they were mostly performed in single-cell suspensions. The advent of imaging mass cytometry introduced the possibility to simultaneously detect a multitude of cellular markers in tissue sections.
View Article and Find Full Text PDFObjective: A comprehensive understanding of anticancer immune responses is paramount for the optimal application and development of cancer immunotherapies. We unravelled local and systemic immune profiles in patients with colorectal cancer (CRC) by high-dimensional analysis to provide an unbiased characterisation of the immune contexture of CRC.
Design: Thirty-six immune cell markers were simultaneously assessed at the single-cell level by mass cytometry in 35 CRC tissues, 26 tumour-associated lymph nodes, 17 colorectal healthy mucosa and 19 peripheral blood samples from 31 patients with CRC.
In colorectal cancer (CRC), T-cell checkpoint blockade is only effective in patients diagnosed with mismatch repair-deficient (MMR-d) cancers. However, defects in Human Leukocyte Antigen (HLA) class I expression were reported to occur in most MMR-d CRCs, which would preclude antigen presentation in these tumours, considered essential for the clinical activity of this immunotherapeutic modality. We revisited this paradox by characterising HLA class I expression in two independent cohorts of CRC.
View Article and Find Full Text PDFObjective: Multiple single-nucleotide polymorphisms (SNPs) conferring susceptibility to osteoarthritis (OA) mark imbalanced expression of positional genes in articular cartilage, reflected by unequally expressed alleles among heterozygotes (allelic imbalance [AI]). We undertook this study to explore the articular cartilage transcriptome from OA patients for AI events to identify putative disease-driving genetic variation.
Methods: AI was assessed in 42 preserved and 5 lesioned OA cartilage samples (from the Research Arthritis and Articular Cartilage study) for which RNA sequencing data were available.
Most disease-associated genetic variants are noncoding, making it challenging to design experiments to understand their functional consequences. Identification of expression quantitative trait loci (eQTLs) has been a powerful approach to infer the downstream effects of disease-associated variants, but most of these variants remain unexplained. The analysis of DNA methylation, a key component of the epigenome, offers highly complementary data on the regulatory potential of genomic regions.
View Article and Find Full Text PDFObjective: To identify intrinsic differences in cartilage gene expression profiles between wild-type- and Dio2-/--mice, as a mechanism to investigate factors that contribute to prolonged healthy tissue homeostasis.
Methods: Previously generated microarray-data (Illumina MouseWG-6 v2) of knee cartilage of wild-type and Dio2 -/- -mice were re-analyzed to identify differential expressed genes independent of mechanical loading conditions by forced treadmill-running. RT-qPCR and western blot analyses of overexpression and knockdown of Calr in mouse chondro-progenitor cells (ATDC5) were applied to assess the direct effect of differential Calr expression on cartilage deposition.
Background: The level of expression of the interleukin 7 receptor (IL7R) gene in blood has recently been found to be associated with familial longevity and healthy ageing. IL7R is crucial for T cell development and important for immune competence. To further investigate the IL7R pathway in ageing, we identified the closest interacting genes to construct an IL7R gene network that consisted of IL7R and six interacting genes: IL2RG, IL7, TSLP, CRLF2, JAK1 and JAK3.
View Article and Find Full Text PDFObjective: To identify osteoarthritis (OA) progression-modulating pathways in articular cartilage and their respective regulatory epigenetic and genetic determinants in end-stage disease.
Methods: Transcriptional activity of CpG was assessed using gene expression data and DNA methylation data for preserved and lesional articular cartilage samples. Disease-responsive transcriptionally active CpG were identified by means of differential methylation between preserved and lesional cartilage.
Ann Rheum Dis
March 2016
Objective: To further explore deiodinase iodothyronine type 2 (DIO2) as a therapeutic target in osteoarthritis (OA) by studying the effects of forced mechanical loading on in vivo joint cartilage tissue homeostasis and the modulating effect herein of Dio2 deficiency.
Methods: Wild-type and C57BL/6-Dio2(-/-) -mice were subjected to a forced running regime for 1 h per day for 3 weeks. Severity of OA was assessed by histological scoring for cartilage damage and synovitis.
Objective: Identify gene expression profiles associated with OA processes in articular cartilage and determine pathways changing during the disease process.
Methods: Genome wide gene expression was determined in paired samples of OA affected and preserved cartilage of the same joint using microarray analysis for 33 patients of the RAAK study. Results were replicated in independent samples by RT-qPCR and immunohistochemistry.
Objective: To identify pathogenic mutations that reveal underlying biological mechanisms driving osteoarthritis (OA).
Methods: Exome sequencing was applied to two distant family members with dominantly inherited early onset primary OA at multiple joint sites with chondrocalcinosis (familial generalised osteoarthritis, FOA). Confirmation of mutations occurred by genotyping and linkage analyses across the extended family.
Objectives: To investigate how the genetic susceptibility gene DIO2 confers risk to osteoarthritis (OA) onset in humans and to explore whether counteracting the deleterious effect could contribute to novel therapeutic approaches.
Methods: Epigenetically regulated expression of DIO2 was explored by assessing methylation of positional CpG-dinucleotides and the respective DIO2 expression in OA-affected and macroscopically preserved articular cartilage from end-stage OA patients. In a human in vitro chondrogenesis model, we measured the effects when thyroid signalling during culturing was either enhanced (excess T3 or lentiviral induced DIO2 overexpression) or decreased (iopanoic acid).
It has been postulated that aging is the consequence of an accelerated accumulation of somatic DNA mutations and that subsequent errors in the primary structure of proteins ultimately reach levels sufficient to affect organismal functions. The technical limitations of detecting somatic changes and the lack of insight about the minimum level of erroneous proteins to cause an error catastrophe hampered any firm conclusions on these theories. In this study, we sequenced the whole genome of DNA in whole blood of two pairs of monozygotic (MZ) twins, 40 and 100 years old, by two independent next-generation sequencing (NGS) platforms (Illumina and Complete Genomics).
View Article and Find Full Text PDFBackground: DNA methylation has been recognized as a key mechanism in cell differentiation. Various studies have compared tissues to characterize epigenetically regulated genomic regions, but due to differences in study design and focus there still is no consensus as to the annotation of genomic regions predominantly involved in tissue-specific methylation. We used a new algorithm to identify and annotate tissue-specific differentially methylated regions (tDMRs) from Illumina 450k chip data for four peripheral tissues (blood, saliva, buccal swabs and hair follicles) and six internal tissues (liver, muscle, pancreas, subcutaneous fat, omentum and spleen with matched blood samples).
View Article and Find Full Text PDFmTOR signalling is implicated in the development of disease and in lifespan extension in model organisms. This pathway has been associated with human diseases such as diabetes and cancer, but has not been investigated for its impact on longevity per se. Here, we investigated whether transcriptional variation within the mTOR pathway is associated with human longevity using whole-blood samples from the Leiden Longevity Study.
View Article and Find Full Text PDFObjective: Genetic variation at the type II deiodinase (D2) gene (DIO2) was previously identified as osteoarthritis (OA) risk factor. To investigate mechanisms possibly underlying this association, we assessed D2 protein in healthy and OA-affected cartilage and investigated allelic balance of the OA risk polymorphism rs225014 at DIO2 in human OA joints.
Methods: Immunohistochemical staining of healthy and OA-affected cartilage was performed for D2.
The Leiden Longevity Study consists of families that express extended survival across generations, decreased morbidity in middle-age, and beneficial metabolic profiles. To identify which pathways drive this complex phenotype of familial longevity and healthy aging, we performed a genome-wide gene expression study within this cohort to screen for mRNAs whose expression changes with age and associates with longevity. We first compared gene expression profiles from whole blood samples between 50 nonagenarians and 50 middle-aged controls, resulting in identification of 2,953 probes that associated with age.
View Article and Find Full Text PDFBy studying the loci that contribute to human longevity, we aim to identify mechanisms that contribute to healthy aging. To identify such loci, we performed a genome-wide association study (GWAS) comparing 403 unrelated nonagenarians from long-living families included in the Leiden Longevity Study (LLS) and 1670 younger population controls. The strongest candidate SNPs from this GWAS have been analyzed in a meta-analysis of nonagenarian cases from the Rotterdam Study, Leiden 85-plus study, and Danish 1905 cohort.
View Article and Find Full Text PDFA set of currently known alleles increasing the risk for coronary artery disease, cancer, and type 2 diabetes as identified by genome-wide association studies was tested for compatibility with human longevity. Here, we show that nonagenarian siblings from long-lived families and singletons older than 85 y of age from the general population carry the same number of disease risk alleles as young controls. Longevity in this study population is not compromised by the cumulative effect of this set of risk alleles for common disease.
View Article and Find Full Text PDFObjective: To study whether common genetic variants of the genes involved in the complex regulatory mechanism determining the intracellular bio-availability of T3 influence osteoarthritis onset.
Methods: In total 17 genetic variants within the genes encoding WD40-repeat/SOCS-box protein 1, ubiquitin specific protease 33, thyroid hormone receptor α, deiodinase, iodothyronine, type III (DIO3) and Indian hedgehog were measured and associated with osteoarthritis in a meta-analyses in European populations from the UK, The Netherlands, Greece and Spain containing a total of 3252 osteoarthritis cases and 2132 controls.
Results: The minor allele of the DIO3 variant rs945006 showed suggestive evidence for protective association in the overall meta-analyses, which was supported by individual osteoarthritis studies and osteoarthritis subtypes.