Publications by authors named "Ruud Buijs"

Converging theoretical frameworks suggest a role and a therapeutic potential for spinal interoceptive pathways in major depressive disorder (MDD). Here, we aimed to evaluate the antidepressant effects and tolerability of transcutaneous spinal direct current stimulation (tsDCS) in MDD. This was a double-blind, randomized, sham-controlled, parallel group, pilot clinical trial in unmedicated adults with moderate MDD.

View Article and Find Full Text PDF

Short sleep is linked to disturbances in glucose metabolism and may induce a prediabetic condition. The biological clock in the suprachiasmatic nucleus (SCN) regulates the glucose rhythm in the circulation and the sleep-wake cycle. SCN vasopressin neurons (SCN) control daily glycemia by regulating the entrance of glucose into the arcuate nucleus (ARC).

View Article and Find Full Text PDF

One possible pathological mechanism underlying hypertension and its related health consequences is dysfunction of the circadian system-a network of coupled circadian clocks that generates and orchestrates rhythms of ≈24 h in behavior and physiology. To better understand the role of circadian function during the development of hypertension, circadian regulation of motor activity is investigated in spontaneously hypertensive rats (SHRs) before the onset of hypertension and in their age-matched controls-Wistar Kyoto rats (WKYs). Two complementary properties in locomotor activity fluctuations are examined to assessthe multiscale regulatory function of the circadian control network: 1) rhythmicity at ≈24 h and 2) fractal patterns-similar temporal correlation at different time scales (≈0.

View Article and Find Full Text PDF

Light at night is an emergent problem for modern society. Rodents exposed to light at night develop a loss of circadian rhythms, which leads to increased adiposity, altered immune response, and increased growth of tumors. In female rats, constant light (LL) eliminates the estrous cycle leading to a state of persistent estrus.

View Article and Find Full Text PDF

Microglia is considered the central nervous system (CNS) resident macrophages that establish an innate immune response against pathogens and toxins. However, the recent studies have shown that microglial gene and protein expression follows a circadian pattern; several immune activation markers and clock genes are expressed rhythmically without the need for an immune stimulus. Furthermore, microglia responds to an immune challenge with different magnitudes depending on the time of the day.

View Article and Find Full Text PDF

Eating during the rest phase is associated with metabolic syndrome, proposed to result from a conflict between food consumption and the energy-saving state imposed by the circadian system. However, in nocturnal rodents, eating during the rest phase (day-feeding, DF) also implies food intake during light exposure. To investigate whether light exposure contributes to DF-induced metabolic impairments, animals receive food during the subjective day without light.

View Article and Find Full Text PDF

Background: Many epidemiological studies revealed that shift work is associated with an increased risk of a number of pathologies, including cardiovascular diseases. An experimental model of shift work in rats has additionally been shown to recapitulate aspects of metabolic disorders observed in human shift workers, including increased fat content and impaired glucose tolerance, and used to demonstrate that restricting food consumption outside working hours prevents shift work-associated obesity and metabolic disturbance. However, the way distinct shift work parameters, such as type of work, quantity, and duration, affect cardiovascular function and the underlying mechanisms, remains poorly understood.

View Article and Find Full Text PDF

Glycemia is maintained within very narrow boundaries with less than 5% variation at a given time of the day. However, over the circadian cycle, glycemia changes with almost 50% difference. How the suprachiasmatic nucleus, the biological clock, maintains these day-night variations with such tiny disparities remains obscure.

View Article and Find Full Text PDF

Baroreflex sensitivity (BRS) is an important function of the nervous system and essential for maintaining blood pressure levels in the physiological range. In hypertension, BRS is decreased both in man and animals. Although increased sympathetic activity is thought to be the main cause of decreased BRS, hence the development of hypertension, the BRS is regulated by both sympathetic (SNS) and parasympathetic (PNS) nervous system.

View Article and Find Full Text PDF

Antipsychotic drugs are efficacious first-line treatments for many individuals diagnosed with a psychiatric illness. However, their adverse metabolic side-effect profile, which resembles the metabolic syndrome, represents a significant clinical problem that increases morbidity and limits treatment adherence. Moreover, the mechanisms involved in antipsychotic-induced adverse metabolic effects (AMEs) are unknown and mitigating strategies and interventions are limited.

View Article and Find Full Text PDF

The circadian system, composed of the central autonomous clock, the suprachiasmatic nucleus (SCN), and systems of the body that follow the signals of the SCN, continuously change the homeostatic set points of the body over the day-night cycle. Changes in the body's physiological state that do not agree with the time of the day feedback to the hypothalamus, and provide input to the SCN to adjust the condition, thus reaching another set point required by the changed conditions. This allows the adjustment of the set points to another level when environmental conditions change, which is thought to promote adaptation and survival.

View Article and Find Full Text PDF

A major function of the nervous system is to maintain a relatively constant internal environment. The distinction between our external environment (i.e.

View Article and Find Full Text PDF

Vasopressin (VP) is an important hormone produced in the supraoptic (SON) and paraventricular nucleus (PVN) with antidiuretic and vasoconstrictor functions in the periphery. As one of the first discovered peptide hormones, VP was also shown to act as a neurotransmitter, where VP is produced and released under the influence of various stimuli. VP is one of the core signals via which the biological clock, the suprachiasmatic nucleus (SCN), imposes its rhythm on its target structures and its production and release is influenced by the rhythm of clock genes and the light/dark cycle.

View Article and Find Full Text PDF

The autonomic nervous system (ANS) modulates the immune response through the engagement of an anti-inflammatory reflex. There is controversy regarding which efferent branch of the ANS, sympathetic or parasympathetic, downregulates the intensity of the inflammatory response. Furthermore, how information about the immune status of the body reaches the CNS to engage this reflex remains unclear.

View Article and Find Full Text PDF

In mammals, time and metabolism are tightly coupled variables; this relationship can be illustrated by numerous examples, such as the circadian variation in food intake or the circadian response to a glucose bolus. We review evidence that the interaction between the suprachiasmatic nucleus and the arcuate nucleus plays a key role in the execution of these functions. The nuclei are reciprocally connected via different projections, and this interaction provides an ideal anatomical framework to modify the temporal output of the hypothalamus to metabolic organs as a consequence of the feedback from the periphery.

View Article and Find Full Text PDF

Recently, there has been a resurgence in regulatory peptide science as a result of three converging trends. The first is the increasing population of the drug pipeline with peptide-based therapeutics, mainly in, but not restricted to, incretin-like molecules for treatment of metabolic disorders such as diabetes. The second is the development of genetic and optogenetic tools enabling new insights into how peptides actually function within brain and peripheral circuits to accomplish homeostatic and allostatic regulation.

View Article and Find Full Text PDF

Night-workers, transcontinental travelers and individuals that regularly shift their sleep timing, suffer from circadian desynchrony and are at risk to develop metabolic disease, cancer, and mood disorders, among others. Experimental and clinical studies provide evidence that food intake restricted to the normal activity phase is a potent synchronizer for the circadian system and can prevent the detrimental metabolic effects associated with circadian disruption. As an alternative, we hypothesized that a timed piece of chocolate scheduled to the onset of the activity phase may be sufficient stimulus to synchronize circadian rhythms under conditions of shift-work or jet-lag.

View Article and Find Full Text PDF

Aims/hypothesis: The central pacemaker of the mammalian biological timing system is located within the suprachiasmatic nucleus (SCN) in the anterior hypothalamus. Together with the peripheral clocks, this central brain clock ensures a timely, up-to-date and proper behaviour for an individual throughout the day-night cycle. A mismatch between the central and peripheral clocks results in a disturbance of daily rhythms in physiology and behaviour.

View Article and Find Full Text PDF