Publications by authors named "Ruud A W Veldhuizen"

Article Synopsis
  • A study investigated acute non-cardiogenic pulmonary edema in drever dogs associated with hunting, focusing on the role of alveolar surfactant.
  • Researchers compared seven affected drever dogs with seven healthy dogs from other breeds, conducting various clinical evaluations and surfactant analysis.
  • Results indicated no significant differences in surfactant properties between the groups, suggesting that the pulmonary edema in drever dogs is not due to surfactant dysfunction.
View Article and Find Full Text PDF

Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero.

View Article and Find Full Text PDF

Bronchopneumonia with interstitial pneumonia (BIP) has been considered a variant of acute interstitial pneumonia (AIP) rather than a distinct disease. This study compared 18 BIP, 24 bronchopneumonia (BP), and 13 AIP cases in feedlot beef cattle. Grossly, BIP cases typically had cranioventral lung lesions of similar morphology and extent as BP cases, but the caudodorsal lung appeared overinflated, bulged on section, and had interlobular edema and emphysema.

View Article and Find Full Text PDF

Background: Antimicrobial peptides are considered potential alternatives to antibiotics. Here we describe the antibacterial properties of a family of novel cathelicidin-related (CR-) peptides, which we named PepBiotics, against bacteria typically present in cystic fibrosis (CF) patients.

Methods: Broth dilution assays were used to determine antibacterial activity of PepBiotics under physiological conditions, as well as development of bacterial resistance against these peptides.

View Article and Find Full Text PDF

Despite decades of preclinical research, no experimentally derived therapies for sepsis have been successfully adopted into routine clinical practice. Factors that contribute to this crisis of translation include poor representation by preclinical models of the complex human condition of sepsis, bias in preclinical studies, as well as limitations of single-laboratory methodology. To overcome some of these shortcomings, multicentre preclinical studies-defined as a research experiment conducted in two or more research laboratories with a common protocol and analysis-are expected to maximize transparency, improve reproducibility, and enhance generalizability.

View Article and Find Full Text PDF

Although abundant evidence exists that adverse events during pregnancy lead to chronic conditions, there is limited information on the impact of acute insults such as sepsis. This study tested the hypothesis that impaired fetal development leads to altered organ responses to a septic insult in both male and female adult offspring. Fetal growth restricted (FGR) rats were generated using a maternal protein-restricted diet.

View Article and Find Full Text PDF

Introduction: The dramatic impact of COVID-19 on humans worldwide has initiated an extraordinary search for effective treatment approaches. One of these is the administration of exogenous surfactant, which is being tested in ongoing clinical trials.

Areas Covered: Exogenous surfactant is a life-saving treatment for premature infants with neonatal respiratory distress syndrome.

View Article and Find Full Text PDF

Fetal growth restriction can affect health outcomes in postnatal life. This study tested the hypothesis that the response to an inflammatory pulmonary insult is altered in pediatric fetal growth restricted rats. Using a low-protein diet during gestation and postnatal life, growth-restricted male and female rats and healthy control rats were exposed to an inflammatory insult via the intratracheal instillation of heat-killed bacteria.

View Article and Find Full Text PDF

Although the GraS sensor kinase of is known for the sensing of and resistance to cationic antimicrobial peptides (CAMPs), we recently established that it also signals in response to acidic pH, which is encountered on human skin concurrently with CAMPs, antimicrobial unsaturated free fatty acids (uFFA), and calcium. We therefore evaluated how these environmental signals would affect GraS function and resistance to antimicrobial uFFA. Growth at pH 5.

View Article and Find Full Text PDF

Advancing age leads to changes to the respiratory system associated with increased susceptibility to lung diseases, and exercise may counteract this effect. To explore the underlying processes, we investigated the effects of aging and exercise on lung mechanics, alveolar macrophage function, and surfactant pools and activity, in mice. It was hypothesized that aging would impact lung mechanics, macrophage polarization, and the status of the surfactant system, and that these changes would be mitigated by exercise.

View Article and Find Full Text PDF

Limited information is available on how fetal growth retardation (FGR) affects the lung in the neonatal period in males and females. This led us to test the hypothesis that FGR alters lung mechanics and the surfactant system during the neonatal period. To test this hypothesis a model of FGR was utilized in which pregnant rat dams were fed a low protein diet during both the gestation and lactation period.

View Article and Find Full Text PDF

As an organ system, the lung has unique advantages and disadvantages for localized drug delivery. Its direct contact with the external environment allows for the upper airways to be easily accessible to intrapulmonary delivery. However, its complex branching structure makes direct delivery to the peripheral airways challenging.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is characterized by recurrent airway infections with antibiotic-resistant bacteria and chronic inflammation. Chicken cathelicin-2 (CATH-2) has been shown to exhibit antimicrobial activity against antibiotic-resistant bacteria and to reduce inflammation. In addition, exogenous pulmonary surfactant has been suggested to enhance pulmonary drug delivery.

View Article and Find Full Text PDF

The development of antibiotic resistance by is a major concern in the treatment of bacterial pneumonia. In the search for novel anti-infective therapies, the chicken-derived peptide cathelicidin-2 (CATH-2) has emerged as a potential candidate, with strong broad-spectrum antimicrobial activity and the ability to limit inflammation by inhibiting Toll-like receptor 2 (TLR2) and TLR4 activation. However, as it is unknown how CATH-2 affects inflammation , we investigated how CATH-2-mediated killing of affects lung inflammation in a murine model.

View Article and Find Full Text PDF

Background: Despite many animal studies and clinical trials, mortality in sepsis remains high. This may be due to the fact that most experimental studies of sepsis employ young animals, whereas the majority of septic patients are elderly (60 - 70 years). The objective of the present study was to examine the sepsis-induced inflammatory and pro-coagulant responses in aged mice.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) is a pulmonary disorder associated with alterations to the pulmonary surfactant system. Recent studies showed that supra-physiological levels of cholesterol in surfactant contribute to impaired function. Since cholesterol is incorporated into surfactant within the alveolar type II cells which derives its cholesterol from serum, it was hypothesized that serum hypercholesterolemia would predispose the host to the development of lung injury due to alterations of cholesterol content in the surfactant system.

View Article and Find Full Text PDF

In this study, we aim to quantify the differences in lung metrics measured in free-breathing and mechanically ventilated rodents using respiratory-gated micro-computed tomography. Healthy male Sprague-Dawley rats were anesthetized with ketamine/xylazine and scanned with a retrospective respiratory gating protocol on a GE Locus Ultra micro-CT scanner. Each animal was scanned while free-breathing, then intubated and mechanically ventilated (MV) and rescanned with a standard ventilation protocol (56 bpm, 8 mL/kg and PEEP of 5 cm HO) and again with a ventilation protocol that approximates the free-breathing parameters (88 bpm, 2.

View Article and Find Full Text PDF

Background: Ex vivo lung perfusion (EVLP) provides opportunities to treat injured donor lungs before transplantation. We investigated whether lung lavage, to eliminate inflammatory inhibitory components, followed by exogenous surfactant replacement, could aid lung recovery and improve post-transplant lung function after gastric aspiration injury.

Methods: Gastric acid aspiration was induced in donor pigs, which were ventilated for 6 hours to develop lung injury.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) is a disease with a variety of causes and is defined by severe hypoxemia. Whereas ARDS carries a mortality of approximately 30 %, patients that survive may ultimately regain near normal pulmonary physiology. The critical pathophysiological processes in ARDS are alveolar barrier dysfunction and overwhelming inflammation.

View Article and Find Full Text PDF

Background: The acute respiratory distress syndrome (ARDS) is a complex pulmonary disorder in which the local release of cytokines and chemokines appears central to the pathophysiology.

Objective: Based on the known role of matrix metalloproteinase-3 (MMP3) in inflammatory processes, the objective was to examine the role of MMP3 in the pathogenesis of ARDS through the modulation of pulmonary inflammation.

Materials And Methods: Female and male, wild type (MMP3) and knock out (MMP3) mice were exposed to two, clinically relevant models of ARDS including (i) lipopolysaccharide (LPS)-induced lung injury, and (ii) hydrochloric acid-induced lung injury.

View Article and Find Full Text PDF

The acute respiratory distress syndrome (ARDS) is characterized by arterial hypoxemia accompanied by severe inflammation and alterations to the pulmonary surfactant system. Published data has demonstrated a protective effect of matrix metalloproteinase-3 (Mmp3) deficiency against the inflammatory response associated with ARDS; however, the effect of Mmp3 on physiologic parameters and alterations to surfactant have not been previously studied. It was hypothesized that Mmp3 deficient (Mmp3(-/-)) mice would be protected against lung dysfunction associated with ARDS and maintain a functional pulmonary surfactant system.

View Article and Find Full Text PDF

Antibiotic-resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a "perfect storm" for multidrug-resistant bacterial infections. Antimicrobial peptides (AMPs) have been suggested as future therapeutics for these drug-resistant bacteria, since they have potent broad-spectrum activity, with little development of resistance. Due to the unique structure of the lung, bacterial pneumonia has the additional problem of delivering antimicrobials to the site of infection.

View Article and Find Full Text PDF

The ability of pulmonary surfactant to reduce surface tension at the alveolar surface is impaired in various lung diseases. Recent animal studies indicate that elevated levels of cholesterol within surfactant may contribute to its inhibition. It was hypothesized that elevated cholesterol levels within surfactant inhibit human surfactant biophysical function and that these effects can be reversed by surfactant protein A (SP-A).

View Article and Find Full Text PDF

Background: Apolipoprotein E (apoE) has been shown to play a pivotal role in the development of cardiovascular disease, attributable to its function in lipid trafficking and immune modulating properties; however, its role in modulating inflammation in the setting of acute lung injury (ALI) is unknown.

Objective: To determine whether apoE-deficient mice (apoE-/-) are more susceptible to ALI compared to wild-type (WT) animals.

Methods: Two independent models of ALI were employed.

View Article and Find Full Text PDF

Background: Mechanical ventilation (MV) is an essential supportive therapy for acute lung injury (ALI); however it can also contribute to systemic inflammation. Since pulmonary surfactant has anti-inflammatory properties, the aim of the study was to investigate the effect of exogenous surfactant administration on ventilation-induced systemic inflammation.

Methods: Mice were randomized to receive an intra-tracheal instillation of a natural exogenous surfactant preparation (bLES, 50 mg/kg) or no treatment as a control.

View Article and Find Full Text PDF