Monogenic diabetes, formerly called Maturity-Onset Diabetes of the Young (MODY), involves single-gene mutations, typically with dominant inheritance, and has been associated with variants in 14 genes. Among these, mutations are the most common, and their diagnosis allows the use of alternative therapies, including sulfonylureas. In an earlier study, we described a variant displaying recessive transmission, p.
View Article and Find Full Text PDFInitially introduced in 1909 by William Bateson, classic epistasis (genetic variant interaction) refers to the phenomenon that one variant prevents another variant from a different locus from manifesting its effects. The potential effects of genetic variant interactions on complex diseases have been recognized for the past decades. Moreover, It has been studied and demonstrated that leveraging the combined SNP effects within the genetic block can significantly increase calculation power, reducing background noise, ultimately leading to novel epistasis discovery that the single SNP statistical epistasis study might overlook.
View Article and Find Full Text PDFGlucokinase (GK) catalyses the key regulatory step in glucose-stimulated insulin secretion. Correspondingly, hetero- and homozygous mutations in human cause maturity-onset diabetes of the young (GCK-MODY) and permanent neonatal diabetes (PNDM), respectively. To explore the possible utility of glucokinase activators (GKA) and of glucagon-like receptor-1 (GLP-1) agonists in these diseases, we have developed a novel hypomorphic allele in mice encoding an aberrantly spliced mRNA deleted for exons 2 and 3.
View Article and Find Full Text PDFPodophages that infect gram-negative bacteria, such as pathogen ΦM1, encode tail assemblies too short to extend across the complex gram-negative cell wall. To overcome this, podophages encode a large protein complex (ejectosome) packaged inside the viral capsid and correspondingly ejected during infection to form a transient channel that spans the periplasmic space. Here, we describe the ejectosome of bacteriophage ΦM1 to a resolution of 3.
View Article and Find Full Text PDFBeta (β)-cell senescence contributes to type 2 diabetes mellitus (T2DM). While exercise is vital for T2DM management and significantly affects cellular ageing markers, its effect on β-cell senescence remains unexplored. Here, we show that short-term endurance exercise training (treadmill running, 1 h per day for 10 days) in two male and female mouse models of insulin resistance decreases β-cell senescence.
View Article and Find Full Text PDFLiver kinase B1 (LKB1/STK11) is an important regulator of pancreatic β-cell identity and function. Elimination of Lkb1 from the β-cell results in improved glucose-stimulated insulin secretion and is accompanied by profound changes in gene expression, including the upregulation of several neuronal genes. The mechanisms through which LKB1 controls gene expression are, at present, poorly understood.
View Article and Find Full Text PDFFunctional pancreatic islet beta cells are essential to ensure glucose homeostasis across species from zebrafish to humans. These cells show significant heterogeneity, and emerging studies have revealed that connectivity across a hierarchical network is required for normal insulin release. Here, we discuss current thinking and areas of debate around intra-islet connectivity, cellular hierarchies and potential "controlling" beta-cell populations.
View Article and Find Full Text PDFMini-G proteins are engineered, thermostable variants of Gα subunits designed to stabilize G protein-coupled receptors (GPCRs) in their active conformations. Because of their small size and ease of use, they are popular tools for assessing GPCR behaviors in cells, both as reporters of receptor coupling to Gα subtypes and for cellular assays to quantify compartmentalized signaling at various subcellular locations. Here, we report that overexpression of mini-G proteins with their cognate GPCRs disrupted GPCR endocytic trafficking and associated intracellular signaling.
View Article and Find Full Text PDFCoordination of cellular activity through Ca enables β cells to secrete precise quantities of insulin. To explore how the Ca response is orchestrated in space and time, we implement optogenetic systems to probe the role of individual β cells in the glucose response. By targeted β cell activation/inactivation in zebrafish, we reveal a hierarchy of cells, each with a different level of influence over islet-wide Ca dynamics.
View Article and Find Full Text PDFLiver kinase B1 (LKB1/STK11) is an important regulator of pancreatic β-cell identity and function. Elimination of from the β-cell results in improved glucose-stimulated insulin secretion and is accompanied by profound changes in gene expression, including the upregulation of several neuronal genes. The mechanisms through which LKB1 controls gene expression are, at present, poorly understood.
View Article and Find Full Text PDFThe canonical model of glucose-induced increase in insulin secretion involves the metabolism of glucose via glycolysis and the citrate cycle, resulting in increased ATP synthesis by the respiratory chain and the closure of ATP-sensitive K+ (KATP) channels. The resulting plasma membrane depolarization, followed by Ca2+ influx through L-type Ca2+ channels, then induces insulin granule fusion. Merrins and colleagues have recently proposed an alternative model whereby KATP channels are controlled by pyruvate kinase, using glycolytic and mitochondrial phosphoenolpyruvate (PEP) to generate microdomains of high ATP/ADP immediately adjacent to KATP channels.
View Article and Find Full Text PDFDespite recent therapeutic advances, achieving optimal glycaemic control remains a challenge in managing Type 2 Diabetes (T2D). Sodium-glucose co-transporter type 2 (SGLT2) inhibitors have emerged as effective treatments by promoting urinary glucose excretion. However, the full scope of their mechanisms extends beyond glycaemic control.
View Article and Find Full Text PDFObjective: Type 2 diabetes (T2D) is characterised by the loss of first-phase insulin secretion. We studied mice with β-cell selective loss of the glucagon receptor (Gcgr X Ins-1), to investigate the role of intra-islet glucagon receptor (GCGR) signalling on pan-islet [Ca] activity and insulin secretion.
Methods: Metabolic profiling was conducted on Gcgr and littermate controls.
Variants at the SLC30A8 locus are associated with type 2 diabetes (T2D) risk. The lead variant, rs13266634, encodes an amino acid change, Arg325Trp (R325W), at the C-terminus of the secretory granule-enriched zinc transporter, ZnT8. Although this protein-coding variant was previously thought to be the sole driver of T2D risk at this locus, recent studies have provided evidence for lowered expression of SLC30A8 mRNA in protective allele carriers.
View Article and Find Full Text PDFIntroduction: Proinflammatory cytokines are implicated in pancreatic ß cell failure in type 1 and type 2 diabetes and are known to stimulate alternative RNA splicing and the expression of nonsense-mediated RNA decay (NMD) components. Here, we investigate whether cytokines regulate NMD activity and identify transcript isoforms targeted in ß cells.
Methods: A luciferase-based NMD reporter transiently expressed in rat INS1(832/13), human-derived EndoC-ßH3, or dispersed human islet cells is used to examine the effect of proinflammatory cytokines (Cyt) on NMD activity.
Aims/hypothesis: Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly connected 'hub' cells, important for the propagation of intercellular Ca waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
March 2024
Introduction: Type 2 diabetes (T2D) onset, progression and outcomes differ substantially between individuals. Multi-omics analyses may allow a deeper understanding of these differences and ultimately facilitate personalised treatments. Here, in an unsupervised "bottom-up" approach, we attempt to group T2D patients based solely on -omics data generated from plasma.
View Article and Find Full Text PDFAims/hypothesis: People with type 2 diabetes are heterogeneous in their disease trajectory, with some progressing more quickly to insulin initiation than others. Although classical biomarkers such as age, HbA and diabetes duration are associated with glycaemic progression, it is unclear how well such variables predict insulin initiation or requirement and whether newly identified markers have added predictive value.
Methods: In two prospective cohort studies as part of IMI-RHAPSODY, we investigated whether clinical variables and three types of molecular markers (metabolites, lipids, proteins) can predict time to insulin requirement using different machine learning approaches (lasso, ridge, GRridge, random forest).
Human pluripotent stem cells (hPSCs) can differentiate into any kind of cell, making them an excellent alternative source of human pancreatic β-cells. hPSCs can either be embryonic stem cells (hESCs) derived from the blastocyst or induced pluripotent cells (hiPSCs) generated directly from somatic cells using a reprogramming process. Here a video-based protocol is presented to outline the optimal culture and passage conditions for hPSCs, prior to their differentiation and subsequent generation of insulin-producing pancreatic cells.
View Article and Find Full Text PDFProinflammatory cytokines are implicated in pancreatic β-cell failure in type 1 and type 2 diabetes and are known to stimulate alternative RNA splicing and the expression of Nonsense-Mediated RNA Decay (NMD) components. Here, we investigate whether cytokines regulate NMD activity and identify transcript isoforms targeted in β-cells. A luciferase-based NMD reporter transiently expressed in rat INS1(832/13), human-derived EndoC-βH3 or dispersed human islet cells is used to examine the effect of proinflammatory cytokines (Cyt) on NMD activity.
View Article and Find Full Text PDFInducing apoptosis in different types of cancer cells is an effective therapeutic strategy. However, the success of existing chemotherapeutics can be compromised by tumor cell resistance and systemic off-target effects. Therefore, the discovery of pro-apoptotic compounds with minimal systemic side-effects is crucial.
View Article and Find Full Text PDF