Publications by authors named "Rutsuko Ito"

Delay discounting (DD) is a phenomenon where individuals devalue a reward associated with a temporal delay, with the rate of devaluation being representative of impulsive-like behavior. Here we first sought to develop and validate a mouse DD task to study brain circuits involved in DD decision-making within short developmental time windows, given widespread evidence of developmental regulation of impulse control and risk-taking. We optimized a T-maze DD task for mice that enables training and DD trials within two weeks.

View Article and Find Full Text PDF

Rationale And Objective: Avoidance of opioid withdrawal plays a key role in human opioid addiction. Here, we present a procedure for studying operant negative reinforcement in rats that was inspired by primate procedures where opioid-dependent subjects lever-press to prevent naloxone infusions.

Methods: In Experiment 1, we trained rats (n = 30, 15 females) to lever-press to escape and then avoid mild footshocks (0.

View Article and Find Full Text PDF

Neural models of approach-avoidance (AA) conflict behavior and its dysfunction have focused traditionally on the hippocampus, with the assumption that this medial temporal lobe (MTL) structure plays a ubiquitous role in arbitrating AA conflict. We challenge this perspective by using three different AA behavioral tasks in conjunction with optogenetics, to demonstrate that a neighboring region in male rats, perirhinal cortex, is also critically involved but only when conflicting motivational values are associated with objects and not contextual information. The ventral hippocampus, in contrast, was found not to be essential for object-associated AA conflict, suggesting its preferential involvement in context-associated conflict.

View Article and Find Full Text PDF

The prefrontal cortex (PFC) has long been associated with arbitrating between approach and avoidance in the face of conflicting and uncertain motivational information, but recent work has also highlighted medial temporal lobe (MTL) involvement. It remains unclear, however, how the contributions of these regions differ in their resolution of conflict information and uncertainty. We designed an fMRI paradigm in which participants approached or avoided object pairs that differed by motivational conflict and outcome uncertainty (complete certainty vs.

View Article and Find Full Text PDF

The ability to resolve an approach-avoidance conflict is critical to adaptive behavior. The ventral CA3 (vCA3) and CA1 (vCA1) subfields of the ventral hippocampus (vHPC) have been shown to facilitate avoidance and approach behavior, respectively, in the face of motivational conflict, but the neural circuits by which this subfield-specific regulation is implemented is unknown. We demonstrate that two distinct pathways from these subfields to lateral septum (LS) contribute to this divergent control.

View Article and Find Full Text PDF

The medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) have been associated with the expression of adaptive and maladaptive behavior elicited by fear-related and drug-associated cues. However, reported effects of mPFC manipulations on cue-elicited natural reward-seeking and inhibition thereof have been varied, with few studies examining cortico-striatal contributions in tasks that require adaptive responding to cues signaling reward and punishment within the same session. The current study aimed to better elucidate the role of mPFC and NAc subdivisions, and their functional connectivity in cue-elicited adaptive responding using a novel discriminative cue responding task.

View Article and Find Full Text PDF

Emerging evidence implicates rodent medial prefrontal cortex (mPFC) in tasks requiring adaptation of behavior to changing information from external and internal sources. However, the computations within mPFC and subsequent outputs that determine behavior are incompletely understood. We review the involvement of mPFC subregions, and their projections to the striatum and amygdala in two broad types of tasks in rodents: 1) appetitive and aversive Pavlovian and operant conditioning tasks that engage mPFC-striatum and mPFC-amygdala circuits, and 2) foraging-based tasks that require decision making to optimize reward.

View Article and Find Full Text PDF

Rationale: Aberrant approach-avoidance conflict processing may contribute to compulsive seeking that characterizes addiction. Exploration of the relationship between drugs of abuse and approach-avoidance behavior remains limited, especially with ethanol.

Objectives: To investigate the effects of voluntary ethanol consumption on approach-avoidance conflict behavior and to examine the potential approach/avoidance bias to predict drinking in male and female rats.

View Article and Find Full Text PDF

Timing uncertainty is a critical component of temporal decision-making, as it determines the decision strategies that maximize reward rate. However, little is known about the biological substrates of timing uncertainty. In this study, we report that the CA3 subregion of the ventral hippocampus (vCA3), a relatively unexplored area in timing, is critical in regulating timing uncertainty that informs temporal decision making.

View Article and Find Full Text PDF

The rodent ventral and primate anterior hippocampus have been implicated in approach-avoidance (AA) conflict processing. It is unclear, however, whether this structure contributes to AA conflict detection and/or resolution, and if its involvement extends to conditions of AA conflict devoid of spatial/contextual information. To investigate this, neurologically healthy human participants first learned to approach or avoid single novel visual objects with the goal of maximizing earned points.

View Article and Find Full Text PDF

Approach-avoidance conflict is induced when an organism encounters a stimulus that carries both positive and negative attributes. Accumulating evidence implicates the ventral hippocampus (VH) in the detection and resolution of approach-avoidance conflict, largely on the basis of maze-based tasks assaying innate and conditioned responses to situations of conflict. However, its role in discrete trial approach-avoidance decision-making has yet to be elucidated.

View Article and Find Full Text PDF

The acquisition of active avoidance (AA) behavior is typically aided by the presence of two signals-the warning signal, which predicts the future occurrence of an aversive event (e.g., shocks), and the safety signal, which is presented upon successful avoidance of oncoming shocks.

View Article and Find Full Text PDF

Although a large body of research has implicated the hippocampus in the processing of memory for temporal duration, there is an exigent degree of inconsistency across studies that obfuscates the precise contributions of this structure. To shed light on this issue, the present review article surveys both historical and recent cross-species evidence emanating from a wide variety of experimental paradigms, identifying areas of convergence and divergence. We suggest that while factors such as time-scale (e.

View Article and Find Full Text PDF

The medial temporal lobe (MTL) has been implicated in approach-avoidance (AA) conflict processing, which arises when a stimulus is imbued with both positive and negative valences. Notably, since the MTL has been traditionally viewed as a mnemonic brain region, a pertinent question is how AA conflict and memory processing interact with each other behaviourally. We conducted two behavioural experiments to examine whether increased AA conflict processing has a significant impact on incidental mnemonic encoding and inferential reasoning.

View Article and Find Full Text PDF

The ventral portion of the rodent hippocampus (HPC; anterior in primates) has been implicated in the detection and resolution of approach-avoidance conflict, which arises when an organism encounters a stimulus that predicts both positive and negative outcomes. Previous work has found differential regulation of approach-avoidance conflict behavior by the CA3 and CA1 subfields, with inhibition of ventral CA3 increasing approach toward conflicting stimuli and inhibition of the ventral CA1 potentiating avoidance. Here, we sought to extend these findings by investigating the role of the dentate gyrus (DG), the input region of the HPC, in learned approach-avoidance conflict processing in rats.

View Article and Find Full Text PDF

The infralimbic (IL) and prelimbic (PL) cortices of the medial prefrontal cortex (mPFC) have been shown to differentially control context-dependent behavior, with the PL implicated in the expression of contextually conditioned fear and drug-seeking, and the IL in the suppression of these behaviors. However, the roles of these subregions in contextually driven natural reward-seeking remain relatively underexplored. The present study further examined the functional dichotomy within the mPFC in the contextual control over cued reward-seeking, using a contextual biconditional discrimination (CBD) task.

View Article and Find Full Text PDF

The dorsal striatum is traditionally known for its role in sensorimotor integration. However, the dorsomedial striatum (DMS) has also been implicated in cost-benefit conflict processing, a role more readily attributed to the ventral striatum (VS), as a site of limbic-motor integration. We recently showed that dopaminergic D1 (D1R) and D2 receptors (D2R) in the VS exert dissociable control over cue-elicited approach-avoidance decision-making, in the presence of conflicting motivational stimuli.

View Article and Find Full Text PDF

Drug addiction is a disorder in which drug seeking persists despite aversive consequences. While it is well documented in animal models of drug sensitization that repeated drug exposure enhances positive incentive motivation for drug and natural reinforcers, its effect on negative incentive motivation, defined here as the motivation to avoid a cued aversive outcome, remains an open question. In the present study, we designed a novel active avoidance (AA) runway paradigm to assess the effects of repeated cocaine exposure on the to avoid an aversive outcome.

View Article and Find Full Text PDF

Rationale: Approach and avoidance decisions are made when an animal experiences a state of motivational conflict inflicted by stimuli imbued with both positive and negative valences. The nucleus accumbens (NAc), a site where valenced information and action selection converge, has recently been found to be critically involved in the resolution of approach-avoidance conflict. However, the individual roles of the region's dopamine receptor D1 (D1R)- and D2 (D2R)-expressing medium spiny neurons (MSNs) in regulating conflict resolution have not been well established.

View Article and Find Full Text PDF

Approach-avoidance conflict arises when an animal encounters a stimulus that is associated simultaneously with positive and negative valences [1]. The effective resolution of approach-avoidance conflict is critical for survival and is believed to go awry in a number of mental disorders, such as anxiety and addiction. An accumulation of evidence from both rodents and humans suggests that the ventral hippocampus (anterior in humans) plays a key role in approach-avoidance conflict processing [2-8], with one influential model proposing that this structure modulates behavioral inhibition in the face of conflicting goals by increasing the influence of negative valences [9].

View Article and Find Full Text PDF

The hippocampus (HPC) has been widely implicated in the contextual control of appetitive and aversive conditioning. However, whole hippocampal lesions do not invariably impair all forms of contextual processing, as in the case of complex biconditional context discrimination, leading to contention over the exact nature of the contribution of the HPC in contextual processing. Moreover, the increasingly well-established functional dissociation between the dorsal (dHPC) and ventral (vHPC) subregions of the HPC has been largely overlooked in the existing literature on hippocampal-based contextual memory processing in appetitively motivated tasks.

View Article and Find Full Text PDF

The nucleus accumbens (NAc) is thought to be a site of integration of positively and negatively valenced information and action selection. Functional differentiation in valence processing has previously been found along the rostrocaudal axis of the shell region of the NAc in assessments of unconditioned motivation. Given that the core region of the NAc has been implicated in the elicitation of motivated behavior in response to conditioned cues, we sought to assess the role of caudal, intermediate, and rostral sites within this subregion in cue-elicited approach-avoidance decisions.

View Article and Find Full Text PDF

The hippocampus (HPC) has been traditionally considered to subserve mnemonic processing and spatial cognition. Over the past decade, however, there has been increasing interest in its contributions to processes beyond these two domains. One question is whether the HPC plays an important role in decision-making under conditions of high approach-avoidance conflict, a scenario that arises when a goal stimulus is simultaneously associated with reward and punishment.

View Article and Find Full Text PDF

Repeated exposure to sub-anesthetic doses of ketamine in rats has been shown to induce cognitive deficits, as well as behavioral changes akin to the negative symptoms of schizophrenia, giving much face validity to the use of ketamine administration as a pharmacological model of schizophrenia. This study sought to further characterize the behavioral effects of two different ketamine pre-treatment regimens, focusing primarily on the effects of repeated ketamine administration on novelty processing, a capacity that is disrupted in schizophrenia. Rats received 5 or 14 intra-peritoneal injections of 30mg/kg ketamine or saline across 5 or 7days, respectively.

View Article and Find Full Text PDF