Publications by authors named "Ruting Huang"

Background: CALCRL (calcitonin receptor-like) protein is an important mediator of the endothelial fluid shear stress response, which is associated with the genetic risk of coronary artery disease. In this study, we functionally characterized the noncoding regulatory elements carrying coronary artery disease that risks single-nucleotide polymorphisms and studied their role in the regulation of expression in endothelial cells.

Methods: To functionally characterize the coronary artery disease single-nucleotide polymorphisms harbored around the gene , we applied an integrative approach encompassing statistical, transcriptional (RNA-seq), and epigenetic (ATAC-seq [transposase-accessible chromatin with sequencing], chromatin immunoprecipitation assay-quantitative polymerase chain reaction, and electromobility shift assay) analyses, alongside luciferase reporter assays, and targeted gene and enhancer perturbations (siRNA and clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) in human aortic endothelial cells.

View Article and Find Full Text PDF
Article Synopsis
  • Vascular health is influenced by mechanical forces from blood flow, with disorders like atherosclerosis more common at bends and junctions in blood vessels.
  • Research identified specific gene regulatory regions (super-enhancers) in endothelial cells that respond differently to healthy unidirectional flow versus disturbed flow associated with atherosclerosis.
  • Using gene editing techniques, the study confirmed the role of these super-enhancers in regulating antioxidant and prothrombotic genes, providing insights into how flow affects vascular health at a molecular level.
View Article and Find Full Text PDF

To address CO emissions caused by the overuse of fossil fuels, photocatalytic CO reduction from metal-organic frameworks (MOFs) to valuable chemicals is critical for energy conversion and storage. Core-shell MOFs improve interfacial interactions, increasing the number of active sites in the catalyst, thereby improving the photocatalytic reduction. In this work, the catalytic performance of Fe/Ni-MOFs toward photocatalytic CO reduction was improved using a bimetallic strategy.

View Article and Find Full Text PDF

Although atherosclerosis preferentially develops at arterial curvatures and bifurcations where disturbed flow (DF) activates endothelium, therapies targeting flow-dependent mechanosensing pathways in the vasculature are unavailable. Here, we provided experimental evidence demonstrating a previously unidentified causal role of DF-induced endothelial TXNDC5 (thioredoxin domain containing 5) in atherosclerosis. TXNDC5 was increased in human and mouse atherosclerotic lesions and induced in endothelium subjected to DF.

View Article and Find Full Text PDF

Vascular disease is a leading cause of morbidity and mortality in the United States and globally. Pathological vascular remodeling, such as atherosclerosis and stenosis, largely develop at arterial sites of curvature, branching, and bifurcation, where disturbed blood flow activates vascular endothelium. Current pharmacological treatments of vascular complications principally target systemic risk factors.

View Article and Find Full Text PDF

Use of light is considered an effective approach to convert CO into usable chemical energy. In the present study, an iron- and nickel-containing bimetallic metal-organic framework (MOF) was synthesized via a simple solvothermal route. SnO was then composited with the said MOF, and the obtained material was calcined and annealed to fabricate a series of nanophotocatalysts.

View Article and Find Full Text PDF

Single-cell motility is spatially heterogeneous and driven by metabolic energy. Directly linking cell motility to cell metabolism is technically challenging but biologically important. Here, we use single-cell metabolic imaging to measure glycolysis in individual endothelial cells with genetically encoded biosensors capable of deciphering metabolic heterogeneity at subcellular resolution.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are porous materials composed of metal centers and organic connectors. They are formed by complexation reactions and exhibit characteristics of both polymers and coordination compounds. They exhibit numerous advantageous features, including a large specific surface area, adjustable pore size/shape, and modifiable pore wall functional groups.

View Article and Find Full Text PDF

Based on the development concepts of "innovation, coordination, green, opening and sharing," a high-quality economic evaluation index system is constructed using city-level data in Yangtze River Economic Belt (YREB), China. Further, the spatial lag model is used to empirically study the effects of environmental regulation, foreign direct investment, and its interaction term on the high-quality economic development. The results show that environmental regulation is conducive to promoting high-quality economic development, which provides a certain empirical basis for the Porter Hypothesis.

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) is a major public health problem with limited therapeutic options. There is a clear need to identify novel mediators of PF to develop effective therapeutics. Here we show that an ER protein disulfide isomerase, thioredoxin domain containing 5 (TXNDC5), is highly upregulated in the lung tissues from both patients with idiopathic pulmonary fibrosis and a mouse model of bleomycin (BLM)-induced PF.

View Article and Find Full Text PDF

Hand-foot-mouth disease (HFMD) is an acute intestinal virus infectious disease which is one of major public health problems in mainland China. Previous studies indicated that HFMD was significantly influenced by climatic factors, but the associated factors were different in different areas and few study on HFMD forecast models was conducted. Here, we analyzed epidemiological characteristics of HFMD in Yiwu City, Zhejiang Province and constructed three forecast models.

View Article and Find Full Text PDF

To investigate the prevalence of Anaplasma, Ehrlichia, Bartonella and Theileria, we collected ticks from small mammals in six counties of Zhejiang Province in southeastern China. Polymerase chain reaction (PCR) amplification was performed to test Anaplasma, Ehrlichia, Bartonella and Theileria in tick samples. Positive PCR products were sequenced and then compared with previously published sequences deposited in GenBank using BLAST.

View Article and Find Full Text PDF

Metal oxides have a large storage capacity when employed as anode materials for lithium-ion batteries (LIBs). However, they often suffer from poor capacity retention due to their low electrical conductivity and huge volume variation during the charge-discharge process. To overcome these limitations, fabrication of metal oxides/carbon hybrids with hollow structures can be expected to further improve their electrochemical properties.

View Article and Find Full Text PDF

Heterostructures formed by the growth of one kind of nanomaterial in/on another have attracted increasing attention due to their microstructural characteristics and potential applications. In this work, SnS-SnO heterostructures were successfully prepared by a facile hydrothermal method. Due to the enhanced visible-light absorption and efficient separation of photo-generated holes and electrons, the SnS-SnO heterostructures display excellent photocatalytic performance for the degradation of rhodamine (RhB) under visible-light irradiation.

View Article and Find Full Text PDF

One-dimensional (1D) heterostructured photocatalysts with controllable texture properties and compositions have attracted increasing interest owing to their unique optical, structural, and electronic advantages. Herein, 1D CoO-SnO heteronanorods were rationally designed and synthesized through a facile solution-based approach. Benefiting from both of their heterostructural and compositional characteristics, the resulting CoO-SnO heteronanorods exhibit high photocatalytic performance for the degradation of Rhodamine B (RhB) under visible-light irridation.

View Article and Find Full Text PDF

Construction of heterostructures with proper band alignment and effective transport and separation of photogenerated charges is highly expected for photocatalysis. In this work, Ni-doped SnO-SnS heterostructures (NiSnSO) are simply prepared by thermal oxidation of Ni-doped hierarchical SnS microspheres in the air. When applied for the photodegradation of organic contaminants, these NiSnSO exhibit excellent catalytic performance and stability due to the following advantages: (1) Ni doping leads to the enhancement of light harvesting of SnS in the visible light regions; (2) the formed heterojunctions promote the transport and separation of photogenerated electrons from SnS to SnO; (3) Ni-SnO quantum dots facilitate the enrichment of reactants, provide more reactive centers and accelerate product diffusion in the reactive centers; (4) the SnS hierarchical microspheres constituted by nanoplates provide abundant active sites, high structural void porosity and accessible inner surface to faciliate the catalytic reactions.

View Article and Find Full Text PDF

Biomechanical cues dynamically control major cellular processes, but whether genetic variants actively participate in mechanosensing mechanisms remains unexplored. Vascular homeostasis is tightly regulated by hemodynamics. Exposure to disturbed blood flow at arterial sites of branching and bifurcation causes constitutive activation of vascular endothelium contributing to atherosclerosis, the major cause of coronary artery disease (CAD) and ischemic stroke (IS).

View Article and Find Full Text PDF

MicroRNAs are noncoding RNA species comprising 18-23 nucleotides that regulate host-virus interaction networks. Here, we show that enterovirus A71 infection in human rhabdomyosarcoma (RD) is regulated by miR-197 expression. Transfection of miR-197 mimic into RD cells inhibited virus replication by interfering with the viral RNA synthesis.

View Article and Find Full Text PDF

ZnO-based heterojunctions have found applications as self-powered ultraviolet photodetectors (PDs). However, high doping levels are not compatible with high mobility for metallic doped ZnO-based PDs so further development has been inhibited. This study demonstrates a method to increase the open-circuit voltage (V ) that allows keeping a sufficiently high level of mobility of ZnO, using a ZnO nanorod/GaN heterojunction that incorporates graphene nanosheets as the active layer.

View Article and Find Full Text PDF

Objective: Disturbed flow (DF) is well-known to induce endothelial dysfunction and synergistically with plasma dyslipidemia facilitate plaque formation. Little is known, however, about the synergistic impact of DF and dyslipidemia on endothelial biomechanics. Our goal was to determine the impact of DF on endothelial stiffness and evaluate the role of dyslipidemia/oxLDL (oxidized low-density lipoprotein) in this process.

View Article and Find Full Text PDF

Hemodynamic forces regulate vascular functions. Disturbed flow (DF) occurs in arterial bifurcations and curvatures, activates endothelial cells (ECs), and results in vascular inflammation and ultimately atherosclerosis. However, how DF alters EC metabolism, and whether resulting metabolic changes induce EC activation, is unknown.

View Article and Find Full Text PDF

Rationale: Acute respiratory distress syndrome (ARDS) is caused by widespread endothelial barrier disruption and uncontrolled cytokine storm. Genome-wide association studies (GWAS) have linked multiple genes to ARDS. Although mechanosensitive transcription factor Krüppel-like factor 2 (KLF2) is a major regulator of endothelial function, its role in regulating pulmonary vascular integrity in lung injury and ARDS-associated GWAS genes remains poorly understood.

View Article and Find Full Text PDF

Unlabelled: Enterovirus 71 (EV71), a member of Picornaviridae, is associated with severe central nervous system complications. In this study, we identified a cellular microRNA (miRNA), miR-197, whose expression was downregulated by viral infection in a time-dependent manner. In miR-197 mimic-transfected cells, EV71 replication was inhibited, whereas the internal ribosome entry site (IRES) activity was decreased in EV71 strains with or without predicted miR-197 target sites, indicating that miR-197 targets host proteins to modulate viral replication.

View Article and Find Full Text PDF

Tin dioxide (SnO2) and graphene are unique strategic functional materials with widespread technological applications, particularly in the areas of solar batteries, optoelectronic devices, and solid-state gas sensors owing to advances in optical and electronic properties. Versatile strategies for microstructural evolution and related performance of SnO2 and graphene composites are of fundamental importance in the development of electrode materials. Here we report that a novel composite, SnO2 quantum dots (QDs) supported by graphene nanosheets (GNSs), has been prepared successfully by a simple hydrothermal method and electron-beam irradiation (EBI) strategies.

View Article and Find Full Text PDF