Publications by authors named "Ruth Yu"

Macrophages contribute to the induction and resolution of inflammation and play a central role in chronic low-grade inflammation in cardiovascular diseases caused by atherosclerosis. Human milk oligosaccharides (HMOs) are complex unconjugated glycans unique to human milk that benefit infant health and act as innate immune modulators. Here, we identify the HMO 3'sialyllactose (3'SL) as a natural inhibitor of TLR4-induced low-grade inflammation in macrophages and endothelium.

View Article and Find Full Text PDF

Despite numerous female contraceptive options, nearly half of all pregnancies are unintended. Family planning choices for men are currently limited to unreliable condoms and invasive vasectomies with questionable reversibility. Here, we report the development of an oral contraceptive approach based on transcriptional disruption of cyclical gene expression patterns during spermatogenesis.

View Article and Find Full Text PDF

Mitochondrial dysfunction is a characteristic trait of human and rodent obesity, insulin resistance and fatty liver disease. Here we show that high-fat diet (HFD) feeding causes mitochondrial fragmentation in inguinal white adipocytes from male mice, leading to reduced oxidative capacity by a process dependent on the small GTPase RalA. RalA expression and activity are increased in white adipocytes after HFD.

View Article and Find Full Text PDF

Oncogenic lesions in pancreatic ductal adenocarcinoma (PDAC) hijack the epigenetic machinery in stromal components to establish a desmoplastic and therapeutic resistant tumor microenvironment (TME). Here we identify Class I histone deacetylases (HDACs) as key epigenetic factors facilitating the induction of pro-desmoplastic and pro-tumorigenic transcriptional programs in pancreatic stromal fibroblasts. Mechanistically, HDAC-mediated changes in chromatin architecture enable the activation of pro-desmoplastic programs directed by serum response factor (SRF) and forkhead box M1 (FOXM1).

View Article and Find Full Text PDF

Oncogenic lesions in pancreatic ductal adenocarcinoma (PDAC) hijack the epigenetic machinery in stromal components to establish a desmoplastic and therapeutic resistant tumor microenvironment (TME). Here we identify Class I histone deacetylases (HDACs) as key epigenetic factors facilitating the induction of pro-desmoplastic and pro-tumorigenic transcriptional programs in pancreatic stromal fibroblasts. Mechanistically, HDAC-mediated changes in chromatin architecture enable the activation of pro-desmoplastic programs directed by serum response factor (SRF) and forkhead box M1 (FOXM1).

View Article and Find Full Text PDF
Article Synopsis
  • Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer that requires new treatment options, prompting research into its underlying mechanisms.
  • The study reveals a significant role of super-enhancers in regulating a cascade of RNA-binding proteins that enhance mRNA translation, promoting PDAC growth.
  • Targeting this cascade, specifically the protein arginine methyltransferase 1 (PRMT1), shows potential as a therapeutic strategy, particularly in Myc-high PDAC patients, leading to reduced tumor growth in experimental models.
View Article and Find Full Text PDF

Colorectal cancer (CRC) is driven by genomic alterations in concert with dietary influences, with the gut microbiome implicated as an effector in disease development and progression. While meta-analyses have provided mechanistic insight into patients with CRC, study heterogeneity has limited causal associations. Using multi-omics studies on genetically controlled cohorts of mice, we identify diet as the major driver of microbial and metabolomic differences, with reductions in α diversity and widespread changes in cecal metabolites seen in high-fat diet (HFD)-fed mice.

View Article and Find Full Text PDF

Successful phytoremediation of acidic metal-contaminated mine tailings requires amendments to condition tailings properties prior to plant establishment. This conditioning process is complex and includes multiple changes in tailings bio-physico-chemical properties. The objective of this project is to identify relationships between tailings properties, the soil microbiome, and plant stress response genes during growth of Atriplex lentiformis in compost-amended (10 %, 15 %, 20 % w/w) mine tailings.

View Article and Find Full Text PDF

Mitochondrial dysfunction is a characteristic trait of human and rodent obesity, insulin resistance, and fatty liver disease. Here we report that mitochondria undergo fragmentation and reduced oxidative capacity specifically in inguinal white adipose tissue after feeding mice high fat diet (HFD) by a process dependent on the small GTPase RalA. RalA expression and activity are increased in white adipocytes from mice fed HFD.

View Article and Find Full Text PDF

Molecular classification of gastric cancer (GC) identified a subgroup of patients showing chemoresistance and poor prognosis, termed SEM (Stem-like/Epithelial-to-mesenchymal transition/Mesenchymal) type in this study. Here, we show that SEM-type GC exhibits a distinct metabolic profile characterized by high glutaminase (GLS) levels. Unexpectedly, SEM-type GC cells are resistant to glutaminolysis inhibition.

View Article and Find Full Text PDF

The pleiotropic actions of the Farnesoid X Receptor (FXR) are required for gut health, and reciprocally, reduced intestinal FXR signaling is seen in inflammatory bowel diseases (IBDs). Here, we show that activation of FXR selectively in the intestine is protective in inflammation-driven models of IBD. Prophylactic activation of FXR restored homeostatic levels of pro-inflammatory cytokines, most notably IL17.

View Article and Find Full Text PDF

Background: There are limited data on the diagnostic accuracy of gut microbial signatures for predicting hepatic decompensation in patients with cirrhosis.

Aims: To determine whether a stool metagenome-derived signature accurately detects hepatic decompensation and mortality risk in cirrhosis secondary to non-alcoholic fatty liver disease (NAFLD) METHODS: Shotgun metagenomic sequencing was performed on faecal samples collected at study entry from a prospective cohort of adults with NAFLD-related cirrhosis. A Random Forest machine learning algorithm was utilised to identify a metagenomic signature of decompensated cirrhosis (defined by ascites, hepatic encephalopathy or variceal haemorrhage) and subsequently validated in an external cohort.

View Article and Find Full Text PDF

Objective: Exercise is a critical component of a healthy lifestyle and a key strategy for the prevention and management of metabolic disease. Identifying molecular mechanisms underlying adaptation in response to chronic physical activity is of critical interest in metabolic physiology. Circadian rhythms broadly modulate metabolism, including muscle substrate utilization and exercise capacity.

View Article and Find Full Text PDF

Background & Aims: Mitochondrial dysfunction disrupts the synthesis and secretion of digestive enzymes in pancreatic acinar cells and plays a primary role in the etiology of exocrine pancreas disorders. However, the transcriptional mechanisms that regulate mitochondrial function to support acinar cell physiology are poorly understood. Here, we aim to elucidate the function of estrogen-related receptor γ (ERRγ) in pancreatic acinar cell mitochondrial homeostasis and energy production.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have found that obesity alters immune responses in models of atopic dermatitis, shifting the disease from a typical T2 pattern to a more severe T17 inflammation.
  • Biologic therapies aimed at T2 cytokines worked well in lean mice but worsened the condition in obese mice, indicating a significant difference in treatment responses based on obesity status.
  • Investigating the molecular mechanisms, researchers discovered that the activity of a receptor called PPARγ is crucial for maintaining T2 responses, and using a PPARγ agonist improved treatment outcomes for obese mice.
View Article and Find Full Text PDF
Article Synopsis
  • Increases in insulin resistance and glucose production are key characteristics of type 2 diabetes, and previous research showed that fibroblast growth factor 1 (FGF1) delivery can have strong anti-diabetic effects.
  • The study reveals that FGF1 lowers hepatic glucose production by inhibiting fat breakdown in adipose tissue through a specific molecular mechanism involving phosphodiesterase 4D (PDE4D).
  • This research also identifies a new phosphorylation site in PDE4D that is affected by feeding and fasting, establishing the FGF1/PDE4 pathway as an important regulator in maintaining fatty acid balance in the body.
View Article and Find Full Text PDF
Article Synopsis
  • Dysregulation of energy balance in obesity features hormone resistance, particularly with less focus on catecholamines.
  • Research shows that the β3-adrenergic receptor, crucial for fat breakdown, is significantly downregulated after exposure to hormones and high-fat diets, leading to catecholamine resistance.
  • Findings suggest that this downregulation happens through pathways involving the TRIB1 protein, which affects the receptor's transcription and impacts energy expenditure, linking these mechanisms to obesity-related issues in both mice and humans.
View Article and Find Full Text PDF

Adipocytes increase energy expenditure in response to prolonged sympathetic activation via persistent expression of uncoupling protein 1 (UCP1). Here we report that the regulation of glycogen metabolism by catecholamines is critical for UCP1 expression. Chronic β-adrenergic activation leads to increased glycogen accumulation in adipocytes expressing UCP1.

View Article and Find Full Text PDF

In macrophages, homeostatic and immune signals induce distinct sets of transcriptional responses, defining cellular identity and functional states. The activity of lineage-specific and signal-induced transcription factors are regulated by chromatin accessibility and other epigenetic modulators. Glucocorticoids are potent antiinflammatory drugs; however, the mechanisms by which they selectively attenuate inflammatory genes are not yet understood.

View Article and Find Full Text PDF

The contribution of adipose-derived FGF21 to energy homeostasis is unclear. Here we show that browning of inguinal white adipose tissue (iWAT) by β-adrenergic agonists requires autocrine FGF21 signaling. Adipose-specific deletion of the FGF21 co-receptor β-Klotho renders mice unresponsive to β-adrenergic stimulation.

View Article and Find Full Text PDF

Oh et al. address concerns about the influence of proton pump inhibitor (PPI) use on a gut microbiome signature for cirrhosis. By removing PPI using subjects from the training cohort and retraining a 19-species Random Forest model, they demonstrate the impact of PPI usage on the signature's diagnostic accuracy is minimal.

View Article and Find Full Text PDF

Background & Aims: Fucosyltransferase 2 (Fut2)-mediated intestinal α1- 2-fucosylation is important for host-microbe interactions and has been associated with several diseases, but its role in obesity and hepatic steatohepatitis is not known. The aim of this study was to investigate the role of Fut2 in a Western-style diet-induced mouse model of obesity and steatohepatitis.

Methods: Wild-type (WT) and Fut2-deficient littermate mice were used and features of the metabolic syndrome and steatohepatitis were assessed after 20 weeks of Western diet feeding.

View Article and Find Full Text PDF

Islets derived from stem cells hold promise as a therapy for insulin-dependent diabetes, but there remain challenges towards achieving this goal. Here we generate human islet-like organoids (HILOs) from induced pluripotent stem cells and show that non-canonical WNT4 signalling drives the metabolic maturation necessary for robust ex vivo glucose-stimulated insulin secretion. These functionally mature HILOs contain endocrine-like cell types that, upon transplantation, rapidly re-establish glucose homeostasis in diabetic NOD/SCID mice.

View Article and Find Full Text PDF