Unlabelled: Nanopore direct RNA sequencing (DRS) enables the capture and full-length sequencing of native RNAs, without recoding or amplification bias. Resulting data sets may be interrogated to define the identity and location of chemically modified ribonucleotides, as well as the length of poly(A) tails, on individual RNA molecules. The success of these analyses is highly dependent on the provision of high-resolution transcriptome annotations in combination with workflows that minimize misalignments and other analysis artifacts.
View Article and Find Full Text PDFHigh-resolution annotations of transcriptomes from all domains of life are essential for many sequencing-based RNA analyses, including Nanopore direct RNA sequencing (DRS), which would otherwise be hindered by misalignments and other analysis artefacts. DRS allows the capture and full-length sequencing of native RNAs, without recoding or amplification bias, and resulting data may be interrogated to define the identity and location of chemically modified ribonucleotides, as well as the length of poly(A) tails on individual RNA molecules. Existing software solutions for generating high-resolution transcriptome annotations are poorly suited to small gene dense organisms such as viruses due to the challenge of identifying distinct transcript isoforms where alternative splicing and overlapping RNAs are prevalent.
View Article and Find Full Text PDFThe chemical modification of ribonucleotides plays an integral role in the biology of diverse viruses and their eukaryotic host cells. Mapping the precise identity, location, and abundance of modified ribonucleotides remains a key goal of many studies aimed at characterizing the function and importance of a given modification. While mapping of specific RNA modifications through short-read sequencing approaches has powered a wealth of new discoveries in the past decade, this approach is limited by inherent biases and an absence of linkage information.
View Article and Find Full Text PDFPurpose: Uveal melanoma is a primary malignancy of the eye with oncogenic mutations in , and additional mutations in (usually associated with LOH of Chr 3), , or . There are other characteristic chromosomal alterations, but their significance is not clear.
Experimental Design: To investigate genes driving chromosomal alterations, we integrated copy number, transcriptome, and mutation data from three cohorts and followed up key findings.
In mammals the regulation of genomic instability plays a key role in tumor suppression and also controls genome plasticity, which is important for recombination during the processes of immunity and meiosis. Most studies to identify regulators of genomic instability have been performed in cells in culture or in systems that report on gross rearrangements of the genome, yet subtle differences in the level of genomic instability can contribute to whole organism phenotypes such as tumor predisposition. Here we performed a genome-wide association study in a population of 1379 outbred Crl:CFW(SW)-US_P08 mice to dissect the genetic landscape of micronucleus formation, a biomarker of chromosomal breaks, whole chromosome loss, and extranuclear DNA.
View Article and Find Full Text PDFRecent advances in proteomic mass spectrometry (MS) offer the chance to marry high-throughput peptide sequencing to transcript models, allowing the validation, refinement, and identification of new protein-coding loci. We present a novel pipeline that integrates highly sensitive and statistically robust peptide spectrum matching with genome-wide protein-coding predictions to perform large-scale gene validation and discovery in the mouse genome for the first time. In searching an excess of 10 million spectra, we have been able to validate 32%, 17%, and 7% of all protein-coding genes, exons, and splice boundaries, respectively.
View Article and Find Full Text PDF