Physical exercise represents a potentially inexpensive, accessible, and optimizable rehabilitation approach to traumatic brain injury (TBI) recovery. However, little is known about the impact of post-injury exercise on the neurometabolic, transcriptional, and cognitive outcomes following a TBI. In the current study, we examined TBI outcomes in adolescent male and female mice following a controlled cortical impact (CCI) injury.
View Article and Find Full Text PDFMild traumatic brain injury (mTBI) produces subtle cerebrovascular impairments that persist over time and promote increased ischemic stroke vulnerability. We recently established a role for vascular impairments in exacerbating stroke outcomes 1 week after TBI, but there is a lack of research regarding long-term impacts of mTBI-induced vascular dysfunction, as well as a significant need to understand how mTBI promotes stroke vulnerability in both males and females. Here, we present data using a mild closed head TBI model and an experimental stroke occurring either 7 or 28 days later in both male and female mice.
View Article and Find Full Text PDFIntoxication is a leading risk factor for injury, and TBI increases the risk for later alcohol misuse, especially when the injury is sustained in childhood. Previously, we modeled this pattern in mice, wherein females injured at postnatal day 21 drank significantly more than uninjured females, while we did not see this effect in males. However, the biological underpinnings of this sex difference have remained elusive.
View Article and Find Full Text PDFRecent studies have reported that TBI is an independent risk factor for subsequent stroke. Here, we tested the hypothesis that TBI would exacerbate experimental stroke outcomes via alternations in neuroimmune and neurometabolic function. We performed a mild closed-head TBI and then one week later induced an experimental stroke in adult male mice.
View Article and Find Full Text PDFPhysician-prescribed rest after traumatic brain injury (TBI) is both commonplace and an increasingly scrutinized approach to TBI treatment. Although this practice remains a standard of patient care for TBI, research of patient outcomes reveals little to no benefit of prescribed rest after TBI, and in some cases prolonged rest has been shown to interfere with patient well-being. In direct contrast to the clinical advice regarding physical activity after TBI, animal models of brain injury consistently indicate that exercise is neuroprotective and promotes recovery.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.