Sensors (Basel)
October 2023
Organic electronics (OE) technology has matured in displays and is advancing in solid-state lighting applications. Other promising and growing uses of this technology are in (bio)chemical sensing, imaging, in vitro cell monitoring, and other biomedical diagnostics that can benefit from low-cost, efficient small devices, including wearable designs that can be fabricated on glass or flexible plastic. OE devices such as organic LEDs, organic and hybrid perovskite-based photodetectors, and organic thin-film transistors, notably organic electrochemical transistors, are utilized in such sensing and (bio)medical applications.
View Article and Find Full Text PDFWe report a nano-optical imaging study of exciton-plasmon polaritons (EPPs) in WSe/Au heterostructures with scattering-type scanning near-field optical microscopy (s-SNOM). By mapping the interference fringes of EPPs at various excitation energies, we constructed the dispersion diagram of the EPPs, which shows strong exciton-plasmon coupling with a sizable Rabi splitting energy (∼0.19 eV).
View Article and Find Full Text PDFHow photoexcitations evolve into Coulomb-bound electron and hole pairs, called excitons, and unbound charge carriers is a key cross-cutting issue in photovoltaics and optoelectronics. Until now, the initial quantum dynamics following photoexcitation remains elusive in the hybrid perovskite system. Here we reveal excitonic Rydberg states with distinct formation pathways by observing the multiple resonant, internal quantum transitions using ultrafast terahertz quasi-particle transport.
View Article and Find Full Text PDFWe demonstrate enhanced absorption in solar cells and enhanced light emission in OLEDs by light interaction with a periodically structured microlens array. We simulate n-i-p perovskite solar cells with a microlens at the air-glass interface, with rigorous scattering matrix simulations. The microlens focuses light in nanoscale regions within the absorber layer enhancing the solar cell.
View Article and Find Full Text PDFApproaches to generate porous or doped sensing films, which significantly enhance the photoluminescence (PL) of oxygen optical sensors, and thus improve the signal-to-noise (S/N) ratio, are presented. Tailored films, which enable monitoring the relative humidity (RH) as well, are also presented. Effective porous structures, in which the O2-sensitive dye Pt octaethylporphyrin (PtOEP) or the Pd analog PdOEP was embedded, were realized by first generating blend films of polyethylene glycol (PEG) with polystyrene (PS) or with ethyl cellulose (EC), and then immersing the dried films in water to remove the water-soluble PEG.
View Article and Find Full Text PDFKey issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs' broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ~20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range.
View Article and Find Full Text PDFThis paper demonstrates extremely efficient (η(P,max) = 118 lm W(-1) ) ITO-free green phosphorescent OLEDs (PHOLEDs) with multilayered, highly conductive poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) films as the anode. The efficiency is obtained without any outcoupling-enhancing structures and is 44% higher than the 82 lm W(-1) of similar optimized ITO-anode PHOLEDs. Detailed simulations show that this improvement is due largely to the intrinsically enhanced outcoupling that results from a weak microcavity effect.
View Article and Find Full Text PDFThin microporous films were formed by dropcasting a toluene solution containing various ratios of polystyrene:polyethylene glycol blends on a glass substrate, with OLEDs on the ITO that coated the opposite side of that substrate. We demonstrate for the first time that such easily-fabricated films with surface and bulk micropores in the index-matching polystyrene can serve as random microlens-like arrays to improve forward OLED light extraction by up to ~60%. A theoretical interpretation of the angular emission profile of the device, considering the geometrical change at the substrate/air interface and the scattering by the pores within the films, was established in excellent agreement with the experiments.
View Article and Find Full Text PDFVery uniform 2 μm-pitch square microlens arrays (μLAs), embossed on the blank glass side of an indium-tin-oxide (ITO)-coated 1.1 mm-thick glass, are used to enhance light extraction from organic light-emitting diodes (OLEDs) by ~100%, significantly higher than enhancements reported previously. The array design and size relative to the OLED pixel size appear to be responsible for this enhancement.
View Article and Find Full Text PDFA photoluminescence (PL)-based oxygen and glucose sensor utilizing inorganic or organic light emitting diode as the light source, and polythiophene: fullerene type bulk-heterojunction devices as photodetectors, for both intensity and decay-time based monitoring of the sensing element's PL. The sensing element is based on the oxygen-sensitive dye Pt-octaethylporphyrin embedded in a polystyrene matrix.
View Article and Find Full Text PDFThis paper describes the development of a compact platform for simultaneous photoluminescence (PL)-based sensing of multiple bioanalytes using a lab-on-CD. The platform is based on microfluidic features generated on foamed polypropylene (PP) surfaces by ultrasonic micro-embossing, sub-micron thick organic light-emitting diode (OLED) pixels that serve as the PL excitation sources, and a compatible array of compact photodetectors (PDs). The localized heating resulting from the ultrasonic micro-embossing enables generation of flash-free micro-patterns on the foamed PP surfaces.
View Article and Find Full Text PDFA compact photoluminescence (PL)-based O2 sensor utilizing an organic light emitting device (OLED) as the light source is described. The sensor device is structurally integrated. That is, the sensing element and the light source, both typically thin films that are fabricated on separate glass substrates, are attached back-to-back.
View Article and Find Full Text PDFA monoclonal antibody (MAb)-gold biosensor chip with low-temperature laser-induced fluorescence detection for analysis of DNA-carcinogen adducts is described. Optimization of the detection limit, dynamic range, and biosensing applicability of the MAb-gold biosensor chip was achieved by: (1) using dithiobis(succinimidyl propionate (DSP)) as a protein linker and (2) employing recombinant protein A to provide oriented immobilization of the MAbs. The use of DSP, which has a short methylene chain length, led to faster protein binding kinetics and higher protein surface density than a longer dithiobis(succinimidyl undecanoate) (DSU) linker.
View Article and Find Full Text PDFThe performance of quartz crystal oscillator-based volatile organic compound (VOC) sensors has been enhanced by using coatings made from poly(styrene-block-ethylene-co-butylene-block-styrene) block copolymers blended with resins and homopolymers. Enhanced performance is characterized by a wider operational temperature range (-10 to +50 degrees C) over which the sensors displayed, concurrently, an analyte sensitivity of >0.2 Hz/ppm toluene, minimal energy loss (resistance <120 ohms), and response times of <20 min (time required to reach 90% of full response).
View Article and Find Full Text PDF