Publications by authors named "Ruth Shelton"

CRISPR-Cas9 homing gene drives are designed to induce a targeted double-stranded DNA break at a wild type allele ('recipient'), which, when repaired by the host cell, is converted to the drive allele from the homologous ('donor') chromosome. Germline localisation of this process leads to super-Mendelian inheritance of the drive and the rapid spread of linked traits, offering a novel strategy for population control through the deliberate release of drive individuals. During the homology-based DNA repair, additional segments of the recipient chromosome may convert to match the donor, potentially impacting carrier fitness and strategy success.

View Article and Find Full Text PDF

The human malaria vector is becoming increasingly resistant to insecticides, spurring the development of genetic control strategies. CRISPR-Cas9 gene drives can modify a population by creating double-stranded breaks at highly specific targets, triggering copying of the gene drive into the cut site ("homing"), ensuring its inheritance. The DNA repair mechanism responsible requires homology between the donor and recipient chromosomes, presenting challenges for the invasion of laboratory-developed gene drives into wild populations of target species species complex, which show high levels of genome variation.

View Article and Find Full Text PDF

An efficient Lewis acid induced nitrogen-driven rearrangement iminium-trapping cascade from an epoxytropinone 3 gives a 7-allylated 6-azabicyclo[3.2.1]octan-3-one 2, which is converted into the alkaloid (+/-)-peduncularine (1).

View Article and Find Full Text PDF