The cellular microenvironment plays a relevant role in cancer development. We have reported that mesenchymal stromal/stem cells (MSCs) deficient for p53 alone or together with RB (p53(-/-)RB(-/-)) originate leiomyosarcoma after subcutaneous (s.c.
View Article and Find Full Text PDFIncreasing evidence supports that mesenchymal stromal/stem cells (MSCs) may represent the target cell for sarcoma development. Although different sarcomas have been modeled in mice upon expression of fusion oncogenes in MSCs, sarcomagenesis has not been successfully modeled in human MSCs (hMSCs). We report that FUS-CHOP, a hallmark fusion gene in mixoid liposarcoma (MLS), has an instructive role in lineage commitment, and its expression in hMSC sequentially immortalized/transformed with up to five oncogenic hits (p53 and Rb deficiency, hTERT over-expression, c-myc stabilization, and H-RAS(v12) mutation) drives the formation of serially transplantable MLS.
View Article and Find Full Text PDFBecause of their unique properties, multipotent mesenchymal stem cells (MSCs) represent one of the most promising adult stem cells being used worldwide in a wide array of clinical applications. Overall, compelling evidence supports the long-term safety of ex vivo expanded human MSCs, which do not seem to transform spontaneously. However, experimental data reveal a link between MSCs and cancer, and MSCs have been reported to inhibit or promote tumor growth depending on yet undefined conditions.
View Article and Find Full Text PDFHuman ESCs provide access to the earliest stages of human development and may serve as an unlimited source of functional cells for future cell therapies. The optimization of methods directing the differentiation of human embryonic stem cells (hESCs) into tissue-specific precursors becomes crucial. We report an efficient enrichment of mesenchymal stem cells (MSCs) from hESCs through specific inhibition of SMAD-2/3 signaling.
View Article and Find Full Text PDFHuman sarcomas have been modeled in mice by expression of specific fusion genes in mesenchymal stem cells (MSCs). However, sarcoma models based on human MSCs are still missing. We attempted to develop a model of liposarcoma by expressing FUS (FUsed in Sarcoma; also termed TLS, Translocated in LipoSarcoma)-CHOP (C/EBP HOmologous Protein; also termed DDIT3, DNA Damage-Inducible Transcript 3), a hallmark mixoid liposarcoma-associated fusion oncogene, in wild-type and p53-deficient mouse and human adipose-derived mesenchymal stem/stromal cells (ASCs).
View Article and Find Full Text PDFSarcomas have been modeled in mice by the expression of specific fusion genes in mesenchymal stem cells (MSC), supporting the concept that MSCs might be the target initiating cell in sarcoma. In this study, we evaluated the potential oncogenic effects of p53 and/or retinoblastoma (Rb) deficiency in MSC transformation and sarcomagenesis. We derived wild-type, p53(-/-), Rb(-/-), and p53(-/-)Rb(-/-) MSC cultures and fully characterized their in vitro growth properties and in vivo tumorigenesis capabilities.
View Article and Find Full Text PDFThere is growing evidence about the role of mesenchymal stem cells (MSCs) as cancer stem cells in many sarcomas. Nevertheless, little is still known about the cellular and molecular mechanisms underlying MSCs transformation. We aimed at investigating the role of p53 and p21, two important regulators of the cell cycle progression and apoptosis normally involved in protection against tumorigenesis.
View Article and Find Full Text PDFA paracrine regulation was recently proposed in human embryonic stem cells (hESCs) grown in mouse embryonic fibroblast (MEF)-conditioned media (MEF-CM), where hESCs spontaneously differentiate into autologous fibroblast-like cells to maintain culture homeostasis by producing TGF-beta and insulin-like growth factor-II (IGF-II) in response to basic fibroblast growth factor (bFGF). Although the importance of TGF-beta family members in the maintenance of pluripotency of hESCs is widely established, very little is known about the role of IGF-II. In order to ease hESC culture conditions and to reduce xenogenic components, we sought (i) to determine whether hESCs can be maintained stable and pluripotent using CM from human foreskin fibroblasts (HFFs) and human mesenchymal stem cells (hMSCs) rather than MEF-CM, and (ii) to analyze whether the cooperation of bFGF with TGF-beta and IGF-II to maintain hESCs in MEF-CM may be extrapolated to hESCs maintained in allogeneic mesenchymal stem cell (MSC)-CM and HFF-CM.
View Article and Find Full Text PDFDevelopmental genes are silenced in embryonic stem cells by a bivalent histone-based chromatin mark. It has been proposed that this mark also confers a predisposition to aberrant DNA promoter hypermethylation of tumor suppressor genes (TSGs) in cancer. We report here that silencing of a significant proportion of these TSGs in human embryonic and adult stem cells is associated with promoter DNA hypermethylation.
View Article and Find Full Text PDFThe Iroquois (Irx) genes encode evolutionary conserved homeoproteins. We report that Xenopus genes Irx1 and Irx3 are expressed and required during different stages of Xenopus pronephros development. They are initially expressed during mid-neurulation in domains extending over most of the prospective pronephric territory.
View Article and Find Full Text PDF