Biological soil crusts (BSCs) are key components of ecosystem productivity in arid lands and they cover a substantial fraction of the terrestrial surface. In particular, BSC N2-fixation contributes significantly to the nitrogen (N) budget of arid land ecosystems. In mature crusts, N2-fixation is largely attributed to heterocystous cyanobacteria; however, early successional crusts possess few N2-fixing cyanobacteria and this suggests that microorganisms other than cyanobacteria mediate N2-fixation during the critical early stages of BSC development.
View Article and Find Full Text PDFGlobal warming will likely force terrestrial plant and animal species to migrate toward cooler areas or sustain range losses; whether this is also true for microorganisms remains unknown. Through continental-scale compositional surveys of soil crust microbial communities across arid North America, we observed a latitudinal replacement in dominance between two key topsoil cyanobacteria that was driven largely by temperature. The responses to temperature of enrichment cultures and cultivated strains support this contention, with one cyanobacterium (Microcoleus vaginatus) being more psychrotolerant and less thermotolerant than the other (M.
View Article and Find Full Text PDFWe characterized a set of 36 strains of cyanobacteria isolated from terrestrial, freshwater and marine intertidal settings to probe their potential to produce hydrogen from excess reductant, in the hope of finding novel strains with improved traits for biohydrogen production. The set was diverse with respect to origin, morphology, taxonomy and phylogeny. We found that about one half of the strains could produce hydrogen from hydrogenases in standard assays, a trait that corresponded invariably with the presence of homologues of the gene hoxH, coding for subunit H in the bidirectional Ni-Fe hydrogenase.
View Article and Find Full Text PDFBackground: The extracellular sunscreen scytonemin is the most common and widespread indole-alkaloid among cyanobacteria. Previous research using the cyanobacterium Nostoc punctiforme ATCC 29133 revealed a unique 18-gene cluster (NpR1276 to NpR1259 in the N. punctiforme genome) involved in the biosynthesis of scytonemin.
View Article and Find Full Text PDFA novel isolate, CP153-2(T), was obtained from topsoil biological crusts in the Colorado Plateau (USA). Colonies were black in colour due to melanin-like pigments when grown on oligotrophic medium, but not when grown on copiotrophic medium. Induction of melanogenesis was independent of growth phase or illumination conditions, including exposure to UVB and UVA radiation, but exposure to UVB could enhance total pigment production and growth under low nitrogen prevented its synthesis.
View Article and Find Full Text PDF