Single-cell methods to assess DNA methylation have not achieved the same level of cell throughput per experiment compared to other modalities, with large-scale datasets requiring extensive automation, time, and other resources. Here, we describe sciMETv3, a combinatorial indexing-based technique that enables atlas-scale libraries to be produced in a single experiment. To reduce the sequencing burden, we demonstrate the compatibility of sciMETv3 with capture techniques to enrich regulatory regions, as well as the ability to leverage enzymatic conversion, which can yield higher library diversity.
View Article and Find Full Text PDFSingle-cell sequencing technologies have revolutionized biomedical research by enabling deconvolution of cell type-specific properties in highly heterogeneous tissue. While robust tools have been developed to handle bioinformatic challenges posed by single-cell RNA and ATAC data, options for emergent modalities such as methylation are much more limited, impeding the utility of results. Here we present Amethyst, a comprehensive R package for atlas-scale single-cell methylation sequencing data analysis.
View Article and Find Full Text PDFThe emergence of life from nonlife, or abiogenesis, remains a fundamental question in scientific inquiry. In this article, we investigate the probability of the origin of life (per conducive site) by leveraging insights from Earth's environments. If life originated endogenously on Earth, its existence is indeed endowed with informative value, although the interpretation of the attendant significance hinges critically upon prior assumptions.
View Article and Find Full Text PDFAnimals representing a wide range of taxonomic groups are known to select specific food combinations to achieve a nutritionally balanced diet. The nutrient balancing hypothesis suggests that, when given the opportunity, animals select foods to achieve a particular target nutrient balance, and that balancing occurs between meals and between days. For wild ruminants who inhabit landscapes dominated by human land use, nutritionally imbalanced diets can result from ingesting agricultural crops rich in starch and sugar (nonstructural carbohydrates [NCs]), which can be provided to them by people as supplementary feeds.
View Article and Find Full Text PDFDNA methylation is a key component of the mammalian epigenome, playing a regulatory role in development, disease, and other processes. Robust, high-throughput single-cell DNA methylation assays are now possible (sciMET); however, the genome-wide nature of DNA methylation results in a high sequencing burden per cell. Here, we leverage target enrichment with sciMET to capture sufficient information per cell for cell type assignment using substantially fewer sequence reads (sciMET-cap).
View Article and Find Full Text PDFSingle-cell whole-genome sequencing (scWGS) enables the assessment of genome-level molecular differences between individual cells with particular relevance to genetically diverse systems like solid tumors. The application of scWGS was limited due to a dearth of accessible platforms capable of producing high-throughput profiles. We present a technique that leverages nucleosome disruption methodologies with the widely adopted 10× Genomics ATAC-seq workflow to produce scWGS profiles for high-throughput copy-number analysis without new equipment or custom reagents.
View Article and Find Full Text PDFDNA methylation is a key component of the mammalian epigenome, playing a regulatory role in development, disease, and other processes. Robust, high-throughput single-cell DNA methylation assays are now possible (sciMET); however, the genome-wide nature of DNA methylation results in a high sequencing burden per cell. Here, we leverage target enrichment with sciMET to capture sufficient information per cell for cell type assignment using substantially fewer sequence reads (sciMET-cap).
View Article and Find Full Text PDFHere we present advancements in single-cell combinatorial indexed Assay for Transposase Accessible Chromatin (sciATAC) to measure chromatin accessibility that leverage nanowell chips to achieve atlas-scale cell throughput (>10 cells) at low cost. The platform leverages the core of the sciATAC workflow where multiple indexed tagmentation reactions are performed, followed by pooling and distribution to a second set of reaction wells for polymerase chain reaction (PCR)-based indexing. In this work, we instead leverage a chip containing 5184 nanowells at the PCR stage of indexing, enabling a 52-fold improvement in scale and reduction in per-cell preparation costs.
View Article and Find Full Text PDFDNA methylation is a key epigenetic property that drives gene regulatory programs in development and disease. Current single-cell methods that produce high quality methylomes are expensive and low throughput without the aid of extensive automation. We previously described a proof-of-principle technique that enabled high cell throughput; however, it produced only low-coverage profiles and was a difficult protocol that required custom sequencing primers and recipes and frequently produced libraries with excessive adapter contamination.
View Article and Find Full Text PDFMethods Mol Biol
September 2019
All organisms release their DNA into the environment through processes such as excretion and the senescence of tissues and limbs. This DNA, often referred to as environmental DNA (eDNA) or sedimentary ancient DNA (sedaDNA), can be recovered from both present-day and ancient soils, fecal samples, bodies of water and lake cores, and even air. While eDNA is a potentially useful record of past and present biodiversity, several challenges complicate data generation and interpretation of results.
View Article and Find Full Text PDFNext Generation Sequencing (NGS) of ancient dental calculus samples from a prehistoric site in San Francisco Bay, CA-SCL-919, reveals a wide range of potentially pathogenic bacteria. One older adult woman, in particular, had high levels of Neisseria meningitidis and low levels of Haemophilus influenzae, species that were not observed in the calculus from three other individuals. Combined with the presence of incipient endocranial lesions and pronounced meningeal grooves, we interpret this as an ancient case of meningococcal disease.
View Article and Find Full Text PDFDNA metabarcoding is an increasingly popular method to characterize and quantify biodiversity in environmental samples. Metabarcoding approaches simultaneously amplify a short, variable genomic region, or "barcode," from a broad taxonomic group via the polymerase chain reaction (PCR), using universal primers that anneal to flanking conserved regions. Results of these experiments are reported as occurrence data, which provide a list of taxa amplified from the sample, or relative abundance data, which measure the relative contribution of each taxon to the overall composition of amplified product.
View Article and Find Full Text PDFDietary choices are central to our understanding of ecology and evolution. Still, many aspects of food choice have been hampered by time consuming procedures and methodological problems. Faster and cheaper methods, such as DNA metabarcoding, have therefore been widely adopted.
View Article and Find Full Text PDFLarge herbivores may affect ecosystem processes and states, but such effects can be difficult to quantify, especially within multispecies assemblages. To better understand such processes and improve our predictive ability of systems undergoing change, herbivore diets can be studied using controlled feeding trials (or cafeteria tests). With some wildlife, such as large herbivores, it is impractical to empirically verify these findings, because it requires visually observing animals in forested environments, which can disturb them from their natural behaviors.
View Article and Find Full Text PDFFine-scale resource use by large herbivores is often difficult to quantify directly. This is particularly true for browsing ungulates due to the challenges in observing shy subjects in forested environments of low visibility. As a consequence we know relatively little about resource use by diverse browsing ungulates.
View Article and Find Full Text PDFMol Ecol Resour
November 2012
Ungulate browsing can have a strong effect on ecological processes by affecting plant community structure and composition, with cascading effects on nutrient cycling and animal communities. However, in the absence of direct observations of foraging, species-specific foraging behaviours are difficult to quantify. We therefore know relatively little about foraging competition and species-specific browsing patterns in systems with several browsers.
View Article and Find Full Text PDFIn response to calls for nursing education reform, a content-based curriculum was changed to a concept-based curriculum, using Kanter's 7 skills for effective change model. The skills include tuning in to the environment, challenging the prevailing organizational wisdom, communicating a compelling aspiration, building coalitions, transferring ownership to a working team, learning to persevere, and making everyone a hero. The authors describe the steps taken to successfully accomplish this arduous task.
View Article and Find Full Text PDF