Bryozoans are small colonial coelomates whose colonies are made of individual modules (zooids). Like most coelomate animals, bryozoans have a characteristic body wall composition, including an epidermis, an extracellular matrix (ECM) and a coelothelium, all pressed together. The order Cyclostomatida, however, presents the most striking deviation, in which the ECM and the corresponding coelothelium underlying major parts of the skeletal wall epidermis are detached to form an independent membranous sac.
View Article and Find Full Text PDFConnections between the vestibular system and the basal ganglia have been postulated since the early 20th century. However, the results of electrophysiological studies investigating neuronal responses to electrical stimulation of the vestibular system have been inconsistent. The aim of this study was to investigate the effects of electrical stimulation of the vestibular labyrinth on single neuron activity and c-Fos expression in the rat striatum.
View Article and Find Full Text PDFThe advantages of using design-based stereology in the collection of quantitative data, have been highlighted, in numerous publications, since the description of the disector method by Sterio (1984). This review article discusses the importance of total number derived with the disector method, as a key variable that must continue to be used to understand the rodent brain and that such data can be used to develop quantitative networks of the brain. The review article will highlight the huge impact total number has had on our understanding of the rodent brain and it will suggest that neuroscientists need to be aware of the increasing number of studies where density, not total number, is the quantitative measure used.
View Article and Find Full Text PDFSome previous studies in humans have shown that bilateral loss of vestibular function is associated with a significant bilateral atrophy of the hippocampus, which correlated with the patients' spatial memory deficits. By contrast, studies in rats have failed to detect any changes in hippocampal volume following bilateral vestibular loss. Therefore, in this study we investigated whether bilateral vestibular deafferentation (BVD) might result in more subtle morphological changes in the rat hippocampus, involving alterations in dendritic intersections, using Golgi staining and Sholl analysis.
View Article and Find Full Text PDFBackground: Binge-like ethanol (EtOH) exposure during the early rat neonatal period results in acute cell loss in specific brain regions, but such acute cell death has not been well established in the hippocampus. Binge alcohol exposure can also result in protein expression changes in the cerebellum that could alter cell fate, but this has not been reported for the hippocampal subregions. This study investigates acute apoptotic cell death in hippocampal regions CA1, CA3, and dentate gyrus (DG) following a binge EtOH exposure on postnatal day (PN) 6, PN8, or PN6 + 8 and the alteration in pro- and anti-apoptotic proteins following a single EtOH binge on PN6.
View Article and Find Full Text PDFBackground: In the rat, binge-like ethanol (EtOH) exposure during the early neonatal period (a developmental period equivalent to the human third trimester) can result in a permanent deficit of cerebellar Purkinje cells (Pcells). However, the consequences of a moderate binge alcohol exposure on a single day during this postnatal period have not been established. This is an issue of importance as many pregnant women binge drink periodically at social drinking levels.
View Article and Find Full Text PDFPrevious studies in humans have shown that bilateral loss of vestibular function is associated with a significant bilateral atrophy of the hippocampus, which correlated with the patients' spatial memory deficits. More recently, patients who had recovered from unilateral vestibular neuritis have been reported to exhibit a significant atrophy of the left posterior hippocampus. Therefore, we investigated whether bilateral vestibular deafferentation (BVD) would result in a decrease in neuronal number or volume in the rat hippocampus, using stereological methods.
View Article and Find Full Text PDFBackground: The rat brain undergoes a period of rapid growth in the early postnatal period. During this time, the neocortex seems to be vulnerable to ethanol injury. Subdivisions of the neocortex develop in a temporospatial gradient that is likely to determine their vulnerability to ethanol-induced damage and whether damage is permanent.
View Article and Find Full Text PDFThe primary antennal sensory centers (antennal lobes) in the brain of the honeybee are highly compartmentalized into discrete spheres of synaptic neuropil called glomeruli. Many of the glomeruli can be identified according to their predictable size and location. This study examines T1-44, a prominent glomerulus on the dorsal surface of the antennal lobe.
View Article and Find Full Text PDFThe primary antennal sensory centers (antennal lobes) in the brain of the honeybee are highly compartmentalized into discrete spheres of synaptic neuropil called glomeruli, many of which can be identified according to their predictable size and location. Glomeruli undergo significant changes in volume during the lifetime of the adult worker bee, at least some of which are activity dependent. This study tests the commonly expressed assumption that increases in neuropil volume are accompanied by an underlying increase in the number of synapses present in the tissue.
View Article and Find Full Text PDFTwenty days of complex motor skill training in adult rats was previously demonstrated to rehabilitate motor performance deficits induced by binge alcohol exposure in neonatal rats. This follow-up study evaluated morphological plasticity in the paramedian lobule of the cerebellum (PML) using the same treatment and training regimens. On postnatal days (PD) 4-9, female Long-Evans rats were given either alcohol (Alcohol Exposure - AE, 4.
View Article and Find Full Text PDF