Publications by authors named "Ruth M Quint"

Background/aim: Melatonin not only regulates circadian rhythm, but also induces apoptosis in tumor cells. Hence, elucidation of the basic reaction mechanisms of melatonin and its metabolites is a matter of interest.

Material And Methods: Melatonin dissolved in a mixture of water/ethanol=40/60 form associates (unstable complexes).

View Article and Find Full Text PDF

Background: Transients of the sex hormones testosterone (TES) and estrone (E1) exhibit an impact on the carcinogenesis of most prostate and breast cancer types. For elucidation of involved reaction mechanisms, in vitro, experiments using γ-ray for generation of attacking hormone transients and UV-light (λ=254 nm) for excitation of hormone molecules were applied. Materials and Methods.

View Article and Find Full Text PDF

Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated.

View Article and Find Full Text PDF

Recent studies showed that hormones like progesterone, testosterone, etc. can eject [Formula: see text] (solvated electrons). By means of electron transfer processes via the brain, the hormones communicate with other biological systems in the organism.

View Article and Find Full Text PDF

4-Hydroxyestrone (4-OHE(1)), a typical cancer-inducing metabolite, originating from 17beta-estradiol (17beta-E2), was chosen as a model for the studies. The aim was to get a deeper insight in the mechanisms of its ability to initiate cancer. It was found, that 4-OHE(1) can eject electrons (e(aq)(-)), when excited in the singlet state by monochromatic UV-light (lambda=254 nm) in polar media (water:ethanol=40:60 vol.

View Article and Find Full Text PDF

Testosterone (TES; 4-androstene-17beta-ol-3-on) is found for the first time to eject electrons from its singlet excited state in water-ethanol solvent mixture. This ability was very recently also observed for 17beta-estradiol (17betaE2) and progesterone (PRG)/1/. With increasing TES-concentration, the yield of solvated electrons (e(s)(-)) is decreasing, because of "associate" formation.

View Article and Find Full Text PDF

It was established for the first time, that the sexual hormones 17beta-estradiol (17betaE2) and progesterone (PRG) are able to emit electrons from their excited single state in water-ethanol mixtures. The yield of the "solvated electrons" (e(s)(-)) depends on the substrate concentration, the ratio of water-alcohol-mixtures and the temperature. The e(s)(-) yield obtained from 17betaE2 is by two orders of magnitude higher than this of PRG.

View Article and Find Full Text PDF