Regulatory non-coding RNAs (ncRNAs) are increasingly recognized as integral to the control of biological processes. This is often through the targeted regulation of mRNA expression, but this is by no means the only mechanism through which regulatory ncRNAs act. The Gene Ontology (GO) has long been used for the systematic annotation of protein-coding and ncRNA gene function, but rapid progress in the understanding of ncRNAs meant that the ontology needed to be revised to accurately reflect current knowledge.
View Article and Find Full Text PDFThe normal development of all heart valves requires highly coordinated signaling pathways and downstream mediators. While genomic variants can be responsible for congenital valve disease, environmental factors can also play a role. Later in life valve calcification is a leading cause of aortic valve stenosis, a progressive disease that may lead to heart failure.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are members of the small non-coding RNA family regulating gene expression at the post-transcriptional level. MiRNAs have been found to have critical roles in various biological and pathological processes. Research in this field has significantly progressed, with increased recognition of the importance of miRNA regulation.
View Article and Find Full Text PDFThe Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms.
View Article and Find Full Text PDFMutations in LRRK2 are the most common genetic cause of Parkinson's disease. Despite substantial research efforts, the physiological and pathological role of this multidomain protein remains poorly defined. In this study, we used a systematic approach to construct the general protein-protein interactome around LRRK2, which was then evaluated taking into consideration the differential expression patterns and the co-expression behaviours of the LRRK2 interactors in 15 different healthy tissue types.
View Article and Find Full Text PDFThe cardiac conduction system (CCS) comprises critical components responsible for the initiation, propagation, and coordination of the action potential. Aberrant CCS development can cause conduction abnormalities, including sick sinus syndrome, accessory pathways, and atrioventricular and bundle branch blocks. Gene Ontology (GO; http://geneontology.
View Article and Find Full Text PDFBioinformatics is becoming an essential tool for the majority of biological and biomedical researchers. Although bioinformatics data is exploited by academic and industrial researchers, limited focus is on teaching this area to undergraduates, postgraduates and senior scientists. Many scientists are developing their own expertise without formal training and often without appreciating the source of the data they are reliant upon.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
January 2022
As computational modeling becomes more essential to analyze and understand biological regulatory mechanisms, governance of the many databases and knowledge bases that support this domain is crucial to guarantee reliability and interoperability of resources. To address this, the COST Action Gene Regulation Ensemble Effort for the Knowledge Commons (GREEKC, CA15205, www.greekc.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
December 2021
Gene regulation computational research requires handling and integrating large amounts of heterogeneous data. The Gene Ontology has demonstrated that ontologies play a fundamental role in biological data interoperability and integration. Ontologies help to express data and knowledge in a machine processable way, which enables complex querying and advanced exploitation of distributed data.
View Article and Find Full Text PDFExperimental data about gene functions curated from the primary literature have enormous value for research scientists in understanding biology. Using the Gene Ontology (GO), manual curation by experts has provided an important resource for studying gene function, especially within model organisms. Unprecedented expansion of the scientific literature and validation of the predicted proteins have increased both data value and the challenges of keeping pace.
View Article and Find Full Text PDFThe role of the blood-brain barrier (BBB) in Alzheimer's and other neurodegenerative diseases is still the subject of many studies. However, those studies using high-throughput methods have been compromised by the lack of Gene Ontology (GO) annotations describing the role of proteins in the normal function of the BBB. The GO Consortium provides a gold-standard bioinformatics resource used for analysis and interpretation of large biomedical data sets.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
December 2021
To control gene transcription, DNA-binding transcription factors recognise specific sequence motifs in gene regulatory regions. A complete and reliable GO annotation of all DNA-binding transcription factors is key to investigating the delicate balance of gene regulation in response to environmental and developmental stimuli. The need for such information is demonstrated by the many lists of transcription factors that have been produced over the past decade.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
December 2021
Transcription plays a central role in defining the identity and functionalities of cells, as well as in their responses to changes in the cellular environment. The Gene Ontology (GO) provides a rigorously defined set of concepts that describe the functions of gene products. A GO annotation is a statement about the function of a particular gene product, represented as an association between a gene product and the biological concept a GO term defines.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
October 2021
The Sequence Ontology (SO) is a structured, controlled vocabulary that provides terms and definitions for genomic annotation. The Gene Regulation Ensemble Effort for the Knowledge Commons (GREEKC) initiative has gathered input from many groups of researchers, including the SO, the Gene Ontology (GO), and gene regulation experts, with the goal of curating information about how gene expression is regulated at the molecular level. Here we discuss recent updates to the SO reflecting current knowledge.
View Article and Find Full Text PDFIntroduction: Plasma proteins affect biological processes and are common drug targets but their role in the development of Alzheimer's disease and related dementias remains unclear. We examined associations between 4953 plasma proteins and cognitive decline and risk of dementia in two cohort studies with 20-year follow-ups.
Methods: In the Whitehall II prospective cohort study proteins were measured using SOMAscan technology.
Biological processes are accomplished by the coordinated action of gene products. Gene products often participate in multiple processes, and can therefore be annotated to multiple Gene Ontology (GO) terms. Nevertheless, processes that are functionally, temporally and/or spatially distant may have few gene products in common, and co-annotation to unrelated processes probably reflects errors in literature curation, ontology structure or automated annotation pipelines.
View Article and Find Full Text PDFMotivation: A large variety of molecular interactions occurs between biomolecular components in cells. When a molecular interaction results in a regulatory effect, exerted by one component onto a downstream component, a so-called 'causal interaction' takes place. Causal interactions constitute the building blocks in our understanding of larger regulatory networks in cells.
View Article and Find Full Text PDFBackground: The past decade has seen the rise of omics data for the understanding of biological systems in health and disease. This wealth of information includes protein-protein interaction (PPI) data derived from both low- and high-throughput assays, which are curated into multiple databases that capture the extent of available information from the peer-reviewed literature. Although these curation efforts are extremely useful, reliably downloading and integrating PPI data from the variety of available repositories is challenging and time consuming.
View Article and Find Full Text PDFBackground Interleukin 6 concentration is associated with myocardial injury, heart failure, and mortality after myocardial infarction. In the Norwegian tocilizumab non-ST-segment-elevation myocardial infarction trial, the first randomized trial of interleukin 6 blockade in myocardial infarction, concentration of both C-reactive protein and troponin T were reduced in the active treatment arm. In this follow-up study, an aptamer-based proteomic approach was employed to discover additional plasma proteins modulated by tocilizumab treatment to gain novel insights into the effects of this therapeutic approach.
View Article and Find Full Text PDFBackground: Gene Ontology (GO) is a major bioinformatic resource used for analysis of large biomedical datasets, for example from genome-wide association studies, applied universally across biological fields, including Alzheimer's disease (AD) research.
Objective: We aim to demonstrate the applicability of GO for interpretation of AD datasets to improve the understanding of the underlying molecular disease mechanisms, including the involvement of inflammatory pathways and dysregulated microRNAs (miRs).
Methods: We have undertaken a systematic full article GO annotation approach focused on microglial proteins implicated in AD and the miRs regulating their expression.
Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls.
View Article and Find Full Text PDF