Publications by authors named "Ruth Klauser"

The modification of octadecanethiolate self-assembled monolayers on Au and Ag by nitrogen-oxygen downstream microwave plasma with variable oxygen content (up to 1%) has been studied by synchrotron-based high-resolution X-ray photoelectron spectroscopy. The primary processes were dehydrogenation, desorption of hydrocarbon and sulfur-containing species, and the oxidation of the alkyl matrix and headgroup-substrate interface. The exact character and the rates of the plasma-induced changes were found to be dependent on the substrate and plasma composition, with the processes in the aliphatic matrix and headgroup-substrate interface being mostly decoupled.

View Article and Find Full Text PDF

Self-assembled monolayers (SAMs) on coinage metal provide versatile modeling systems for studies of interfacial electron transfer, biological interactions, molecular recognition, and other interfacial phenomena. The bonding of enzyme to SAMs of alkanethiols onto gold surfaces is exploited to produce an enzyme chip. In this work, the attachment of trypsin to a SAMs surface of 11-mercaptoundecanoic acid was achieved using water soluble N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide as coupling agent.

View Article and Find Full Text PDF

Methyl radicals are generated by pyrolysis of azomethane, and the condition for achieving neat adsorption on Cu(110) is described for studying their chemisorption and reaction characteristics. The radical-surface system is examined by X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, temperature-programmed desorption, low-energy electron diffraction (LEED), and high-resolution electron energy loss spectroscopy under ultrahigh vacuum conditions. It is observed that a small fraction of impinging CH3 radicals decompose into methylene possibly on surface defect sites.

View Article and Find Full Text PDF

Self-assembled monolayers (SAMs) on coinage metal provide versatile modeling systems for studies of interfacial electron transfer, biological interactions, molecular recognition and other interfacial phenomena. Recently the bonding of enzyme to SAMs of alkanethiols onto Au electrode surfaces was exploited to produce a bio-sensing system. In this work, the attachment of trypsin to a SAMs surface of 11-mercaptoundecanoic acid was achieved using water soluble N-ethyl-N '-(3-dimethylaminopropyl)carbodiimide hydrochloride and N-hydroxysuccinimide as coupling agent.

View Article and Find Full Text PDF

Modification of octadecanethiolate self-assembled monolayers on Au by nitrogen-oxygen or argon-oxygen downstream microwave plasma with a low oxygen content (estimated below several percent) has been studied by synchrotron-based high-resolution X-ray photoelectron spectroscopy and water contact angle measurements. For both types of plasma, the primary processes were found to be the loss of conformational and orientational order and the oxidation of the alkyl matrix and headgroup-substrate interface. At the same time, the film modification occurred much faster and with different intermediates for the nitrogen plasma than for the argon plasma.

View Article and Find Full Text PDF

Self-assembled monolayers (SAMs) on coinage metal provide versatile modeling systems for studies of interfacial electron transfer, biological interactions, molecular recognition, and other interfacial phenomena. Recently, the bonding of enzyme to SAMs of alkanethiols onto Au electrode surfaces was exploited to produce a bio-sensing system. In this work, the attachment of trypsin to a SAMs surface of 11-mercaptoundecanoic acid was achieved using water soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide as coupling agent.

View Article and Find Full Text PDF

Antenna coupling microwave plasma enables a highly oxidative treatment of the outmost surface of polypropylene (PP) nonwoven fabric within a short time period. Subsequently, grafting copolymerization with acrylic acid (AAc) makes the plasma-treated fabric durably hydrophilic and excellent in water absorbency. With high grafting density and strong water affinity, the pAAc-grafted support greatly becomes feasible as an intensive absorbent and as a support to promote heparin immobilization through amide bonds.

View Article and Find Full Text PDF

Exposure to ultra-violet (UV)-C radiation is a frequently used method to prevent bacteria from invasion of blood-contact biomedical products. Potential damage induced by UV radiation to collagen is of concern due to the decay of bioactivity, considerably correlated with structural alterations. Our current investigation studies the collagen-bonded non-woven polypropylene (PP) fabric surface.

View Article and Find Full Text PDF