Biodiversity-ecosystem functioning (BEF) experiments have predominantly focused on communities of higher organisms, in particular plants, with comparably little known to date about the relevance of biodiversity for microbially driven biogeochemical processes. Methanotrophic bacteria play a key role in Earth's methane (CH ) cycle by removing atmospheric CH and reducing emissions from methanogenesis in wetlands and landfills. Here, we used a dilution-to-extinction approach to simulate diversity loss in a methanotrophic landfill cover soil community.
View Article and Find Full Text PDFCellulases have a broad range of different industrial applications, ranging from food and beverages to pulp and paper and the biofuels area. Here a metagenomics based strategy was used to identify the cellulolytic enzyme CelRH5 from the rhizosphere. CelRH5 is a novel monospecific endo-β-1,4-glucanase belonging to the glycosyl hydrolase family 5 (GH5).
View Article and Find Full Text PDFBiodiversity enhances ecosystem functions such as biomass production and nutrient cycling. Although the majority of the terrestrial biodiversity is hidden in soils, very little is known about the importance of the diversity of microbial communities for soil functioning. Here, we tested effects of biodiversity on the functioning of methanotrophs, a specialized group of soil bacteria that plays a key role in mediating greenhouse gas emissions from soils.
View Article and Find Full Text PDFVascular plants play a key role in controlling CH4 emissions from natural wetlands, because they influence CH4 production, oxidation, and transport to the atmosphere. Here we investigated differences in the abundance and composition of methanotrophic and methanogenic communities in three Swiss alpine fens dominated by different vascular plant species under natural conditions. The sampling locations either were situated at geographically distinct sites with different physicochemical properties but the same dominant plant species (Carex rostrata) or were located within the same site, showing comparable physicochemical pore water properties, but had different plant species (C.
View Article and Find Full Text PDFWetlands are important sources of the greenhouse gas methane (CH4). We provide an in situ study of CH4 dynamics in the permanently submerged soil of a Swiss alpine fen. Physico-chemical pore water analyses were combined with structural and microbiological analyses of soil cores at high vertical resolution down to 50 cm depth.
View Article and Find Full Text PDFA functional metagenomics based approach exploiting the microbiota of suppressive soils from an organic field site has succeeded in the identification of a clone with the ability to inhibit the growth of Bacillus subtilis DSM10. Sequencing of the fosmid identified a putative β-lactamase-like gene abgT. Transposon mutagenesis of the abgT gene resulted in a loss in ability to inhibit the growth of B.
View Article and Find Full Text PDFAerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4 ) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable-isotope probing of polar lipid-derived fatty acids (PLFA-SIP) were complemented by microarray analysis of pmoA genes and transcripts, linking diversity and function at the field scale.
View Article and Find Full Text PDFEnviron Sci Technol
December 2013
Radon (Rn) is a naturally occurring radioactive noble gas, which is ubiquitous in soil gas. Especially, its long-lived isotope (222)Rn (half-life: 3.82 d) gained widespread acceptance as a tracer for gas transport in soils, while the short-lived (220)Rn (half-life: 55.
View Article and Find Full Text PDFSampling methods for characterization of microbial communities in aquifers should target both suspended and attached microorganisms (biofilms). We investigated the effectiveness and reproducibility of low-frequency (200 Hz) sonication pulses on improving extraction efficiency and quality of microorganisms from a petroleum-contaminated aquifer in Studen (Switzerland). Sonication pulses at different power levels (0.
View Article and Find Full Text PDFClassical definitions of syntrophy focus on a process, performed through metabolic interaction between dependent microbial partners, such as the degradation of complex organic compounds under anoxic conditions. However, examples from past and current scientific discoveries suggest that a new, simple but wider definition is necessary to cover all aspects of microbial syntrophy. We suggest the term 'obligately mutualistic metabolism', which still focuses on microbial metabolic cooperation but also includes an ecological aspect: the benefit for both partners.
View Article and Find Full Text PDFAerobic methane-oxidizing bacteria (MOB) play an important role in soils, mitigating emissions of the greenhouse gas methane (CH(4)) to the atmosphere. Here, we combined stable isotope probing on MOB-specific phospholipid fatty acids (PLFA-SIP) with field-based gas push-pull tests (GPPTs). This novel approach (SIP-GPPT) was tested in a landfill-cover soil at four locations with different MOB activity.
View Article and Find Full Text PDFIn landfill-cover soils, aerobic methane-oxidizing bacteria (MOB) convert CH(4) to CO(2), mitigating emissions of the greenhouse gas CH(4) to the atmosphere. We investigated overall MOB community structure and assessed spatial differences in MOB diversity, abundance and activity in a Swiss landfill-cover soil. Molecular cloning, terminal restriction-fragment length polymorphism (T-RFLP) and quantitative PCR of pmoA genes were applied to soil collected from 16 locations at three different depths to study MOB community structure, diversity and abundance; MOB activity was measured in the field using gas push-pull tests.
View Article and Find Full Text PDFVisualization of microorganisms in soils and sediments using fluorescent dyes is a common method in microbial ecology studies, but is often hampered by strong nonspecific background fluorescence that can mask genuine cellular signals. The cyanine nucleic acid binding dyes TO-PRO-3 and TOTO-3 iodide enabled a clear detection of microbial cells in a mineral soil, while nonspecific background was greatly reduced compared with commonly used dyes. When used as counterstains for fluorescence in situ hybridization (FISH), both cyanine dyes allowed identification of microbial cells despite strong background from nonspecifically bound probes.
View Article and Find Full Text PDFIn the surface waters of sulfidic springs near Regensburg, Bavaria, Germany, the SM1 euryarchaeon, together with filamentous bacteria, forms the recently described unique string-of-pearls community. In addition to naturally occurring string-of-pearls communities, the growth of these communities was also observed on polyethylene nets provided as an artificial attachment material in the streamlets of springs. In order to learn more about the distribution and origin of the SM1 euryarchaeon and its possible occurrence in the subsurface, polyethylene nets were incubated as deeply as possible in different spring holes.
View Article and Find Full Text PDFRecently, a unique microbial community, growing in a whitish, macroscopically visible strings-of-pearls-like structure was discovered in the cold, sulfidic marsh water of the Sippenauer Moor near Regensburg, Bavaria, Germany. The pearls interior is predominated by microcolonies of the non-methanogenic SM1 euryarchaeon; the outer part of the pearls is mainly composed of Thiothrix. To screen sulfidic ecosystems for the distribution of such unique microbial communities, comparative microbial and geochemical analyses of cold, sulfidic springs of three geographically distinct locations in Bavaria, Germany, and Dalyan, Turkey, were performed.
View Article and Find Full Text PDF