Publications by authors named "Ruth Heidelberger"

Article Synopsis
  • Syntaxin 3 is part of a protein family crucial for the fusion of vesicles with membranes, impacting various cellular processes.
  • Mutations in the syntaxin 3A splice form are linked to a serious gut disorder, while additional mutations involving syntaxin 3B can lead to early-onset retinal diseases.
  • The review focuses on new research highlighting the functions of syntaxin 3B in membrane fusion and neurotransmitter release specifically in the vertebrate retina.
View Article and Find Full Text PDF

Retinal neurons that form ribbon-style synapses operate over a wide dynamic range, continuously relaying visual information to their downstream targets. The remarkable signaling abilities of these neurons are supported by specialized presynaptic machinery, one component of which is syntaxin3B. Syntaxin3B is an essential t-SNARE protein of photoreceptors and bipolar cells that is required for neurotransmitter release.

View Article and Find Full Text PDF

Biallelic loss-of-function mutations in the syntaxin 3 gene have been linked to a severe retinal dystrophy in humans that presents in early childhood. In mouse models, biallelic inactivation of the syntaxin 3 gene in photoreceptors rapidly leads to their death. What is not known is whether a monoallelic syntaxin 3 loss-of-function mutation might cause photoreceptor loss with advancing age.

View Article and Find Full Text PDF

Biallelic STX3 variants were previously reported in five individuals with the severe congenital enteropathy, microvillus inclusion disease (MVID). Here, we provide a significant extension of the phenotypic spectrum caused by STX3 variants. We report ten individuals of diverse geographic origin with biallelic STX3 loss-of-function variants, identified through exome sequencing, single-nucleotide polymorphism array-based homozygosity mapping, and international collaboration.

View Article and Find Full Text PDF

Degranulation, a fundamental effector response from mast cells (MCs) and platelets, is an example of regulated exocytosis. This process is mediated by SNARE proteins and their regulators. We have previously shown that several of these proteins are essential for exocytosis in MCs and platelets.

View Article and Find Full Text PDF
Article Synopsis
  • Neurotransmitter release at retinal synapses is facilitated by a specific t-SNARE protein, syntaxin3B (STX3B), which can be phosphorylated by CaMKII, affecting SNARE complex formation.
  • A study found that phosphorylation of STX3B at T14 is influenced by light and intracellular calcium levels, showing a higher phosphorylation ratio in dark-adapted rod photoreceptors compared to light-exposed conditions.
  • In rod bipolar cells, higher phosphorylation occurs in light-exposed states, and experiments confirmed that increased calcium is an essential factor for this phosphorylation, which can be inhibited by specific kinase inhibitors.
View Article and Find Full Text PDF

Calmodulin binding is a nearly universal property of gap junction proteins, imparting a calcium-dependent uncoupling behavior that can serve in an emergency to decouple a stressed cell from its neighbors. However, gap junctions that function as electrical synapses within networks of neurons routinely encounter large fluctuations in local cytoplasmic calcium concentration; frequent uncoupling would be impractical and counterproductive. We have studied the properties and functional consequences of calmodulin binding to the electrical synapse protein Connexin 35 (Cx35 or gjd2b), homologous to mammalian Connexin 36 (Cx36 or gjd2).

View Article and Find Full Text PDF

First proposed as a specialized mode of release at sensory neurons possessing ribbon synapses, multivesicular release has since been described throughout the central nervous system. Many aspects of multivesicular release remain poorly understood. We explored mechanisms underlying simultaneous multivesicular release at ribbon synapses in salamander retinal rod photoreceptors.

View Article and Find Full Text PDF

Mast cells (MCs) participate in allergy, inflammation, and defense against pathogens. They release multiple immune mediators via exocytosis, a process that requires SNARE proteins, including syntaxins (Stxs). The identity of the Stxs involved in MC exocytosis remains controversial.

View Article and Find Full Text PDF

Mast cells (MCs) play pivotal roles in many inflammatory conditions including infections, anaphylaxis, and asthma. MCs store immunoregulatory compounds in their large cytoplasmic granules and, upon stimulation, secrete them via regulated exocytosis. Exocytosis in many cells requires the participation of Munc18 proteins (also known as syntaxin-binding proteins), and we found that mature MCs express all three mammalian isoforms: Munc18-1, -2, and -3.

View Article and Find Full Text PDF

Mast cells (MCs) are involved in host defenses against pathogens and inflammation. Stimulated MCs release substances stored in their granules via regulated exocytosis. In other cell types, Munc13 (mammalian homolog of uncoordinated gene 13) proteins play essential roles in regulated exocytosis.

View Article and Find Full Text PDF

Neurons that form ribbon-style synapses are specialized for continuous exocytosis. To this end, their synaptic terminals contain numerous synaptic vesicles, some of which are ribbon associated, that have difference susceptibilities for undergoing Ca-dependent exocytosis. In this study, we probed the relationship between previously defined vesicle populations and determined their fusion competency with respect to SNARE complex formation.

View Article and Find Full Text PDF

Ribbon synapses in the retina lack the t-SNARE (target-soluble N-ethylmaleimide-sensitive factor attachment protein receptor) syntaxin 1A that is found in conventional synapses of the nervous system, but instead contain the related isoform syntaxin 3B. Previous studies have demonstrated that syntaxin 3B is essential for synaptic vesicle exocytosis in ribbon synapses, but syntaxin 3B is less efficient than syntaxin 1A in binding the t-SNARE protein SNAP-25 and catalyzing vesicle fusion. We demonstrate here that syntaxin 3B is localized mainly on the presynaptic membrane of retinal ribbon synapses and that a subset of syntaxin 3B is localized in close proximity to the synaptic ribbon.

View Article and Find Full Text PDF

Ca(2+) signaling in synaptic terminals plays a critical role in neurotransmitter release and short-term synaptic plasticity. In the present study, we examined the role of synaptic Ca(2+) handling mechanisms in the synaptic terminals of mammalian rod bipolar cells, neurons that play a pivotal role in the high-sensitivity vision pathway. We found that mitochondria sequester Ca(2+) under conditions of high Ca(2+) load, maintaining intraterminal Ca(2+) near resting levels.

View Article and Find Full Text PDF

Purpose: Previously, retinopetal axons containing histamine and dopaminergic neurons expressing histamine H(1)-receptor had been localized in mouse retinas using anatomic techniques. The goal of these experiments was to demonstrate that these receptors are functional.

Methods: Dopaminergic cells were acutely isolated from retinas of transgenic mice expressing red fluorescent protein under control of the tyrosine hydroxylase promoter and loaded with the calcium indicator Fura-2.

View Article and Find Full Text PDF

Bipolar cells play a vital role in the transfer of visual information across the vertebrate retina. The synaptic output of these neurons is regulated by factors that are extrinsic and intrinsic. Relatively little is known about the intrinsic factors that regulate neurotransmitter exocytosis.

View Article and Find Full Text PDF

Synaptic vesicle 2 (SV2) proteins, critical for proper nervous system function, are implicated in human epilepsy, yet little is known about their function. We demonstrate, using direct approaches, that loss of the major SV2 isoform in a central nervous system nerve terminal is associated with an elevation in both resting and evoked presynaptic Ca(2+) signals. This increase is essential for the expression of the SV2B(-/-) secretory phenotype, characterized by changes in synaptic vesicle dynamics, synaptic plasticity, and synaptic strength.

View Article and Find Full Text PDF

Exocytosis from the rod photoreceptor is stimulated by submicromolar Ca(2+) and exhibits an unusually shallow dependence on presynaptic Ca(2+). To provide a quantitative description of the photoreceptor Ca(2+) sensor for exocytosis, we tested a family of conventional and allosteric computational models describing the final Ca(2+)-binding steps leading to exocytosis. Simulations were fit to two measures of release, evoked by flash-photolysis of caged Ca(2+): exocytotic capacitance changes from individual rods and postsynaptic currents of second-order neurons.

View Article and Find Full Text PDF

Mast cell degranulation is a highly regulated, calcium-dependent process, which is important for the acute release of inflammatory mediators during the course of many pathological conditions. We previously found that Synaptotagmin-2, a calcium sensor in neuronal exocytosis, was expressed in a mast cell line. We postulated that this protein may be involved in the control of mast cell-regulated exocytosis, and we generated Synaptotagmin-2 knock-out mice to test our hypothesis.

View Article and Find Full Text PDF

To better understand synaptic signaling at the mammalian rod bipolar cell terminal and pave the way for applying genetic approaches to the study of visual information processing in the mammalian retina, synaptic vesicle dynamics and intraterminal calcium were monitored in terminals of acutely isolated mouse rod bipolar cells and the number of ribbon-style active zones quantified. We identified a releasable pool, corresponding to a maximum of 7 s. The presence of a smaller, rapidly releasing pool and a small, fast component of refilling was also suggested.

View Article and Find Full Text PDF

Time-resolved capacitance measurements in combination with fluorescence measurements of internal calcium suggested three kinetic components of release in acutely isolated cone photoreceptors of the tiger salamander. A 45-fF releasable pool, corresponding to about 1,000 vesicles, was identified. This pool could be depleted with a time constant of a few hundred milliseconds and its recovery from depletion was quite rapid (tau approximately 1 s).

View Article and Find Full Text PDF

The release of neurotransmitter via exocytosis is a highly conserved, fundamental feature of nervous system function. At conventional synapses, neurotransmitter release occurs as a brief burst of exocytosis triggered by an action potential. By contrast, at the first synapse of the vertebrate visual pathway, not only is the calcium-dependent release of neurotransmitter typically graded with respect to the presynaptic membrane potential, but release can be maintained throughout the duration of a sustained stimulus.

View Article and Find Full Text PDF

The mouse is an important model system for understanding the molecular basis of neuronal signaling and diseases of synaptic communication. However, the best-characterized retinal ribbon-style synapses are those of nonmammalian vertebrates. To remedy this situation, we asked whether it would be feasible to track synaptic vesicle dynamics in the isolated mouse rod bipolar cell using time-resolved capacitance measurements.

View Article and Find Full Text PDF

We examined the interactions of calmodulin with neuronal gap junction proteins connexin35 (Cx35) from perch, its mouse homologue Cx36, and the related perch Cx34.7 using surface plasmon resonance. Calmodulin bound to the C-terminal domains of all three connexins with rapid kinetics in a concentration- and Ca2+-dependent manner.

View Article and Find Full Text PDF