Alzheimer's disease is the most common cause of dementia in the elderly. Although the primary cause of the disease is presently unknown, to date several risk factors have been described. Evidence suggests that one of these risk factors could be chronic stress.
View Article and Find Full Text PDFThis review aims to point out that chronic stress is able to accelerate the appearance of Alzheimer's disease (AD), proposing the former as a risk factor for the latter. Firstly, in the introduction we describe some human epidemiological studies pointing out the possibility that chronic stress could increase the incidence, or the rate of appearance of AD. Afterwards, we try to justify these epidemiological results with some experimental data.
View Article and Find Full Text PDFResearch indicates that inflammation and microglial activation are involved in the initiation and progression of Parkinson's disease (PD). Neuroinflammation contributes to the infiltration of peripheral immune cells and blood-brain barrier (BBB) leakage, linking peripheral and central inflammatory events in the pathogenesis of PD. Dopamine (DA) likely plays a role in this process.
View Article and Find Full Text PDFEvidence supports the role of inflammation in the development of neurodegenerative diseases. In this work, we are interested in inflammation as a risk factor by itself and not only as a factor contributing to neurodegeneration. We tested the influence of a mild to moderate peripheral inflammation (injection of carrageenan into the paws of rats) on the degeneration of dopaminergic neurons in an animal model based on the intranigral injection of lipopolysaccharide (LPS), a potent inflammatory agent.
View Article and Find Full Text PDFPeripheral inflammation could play a role in the origin and development of certain neurodegenerative disorders. To ascertain this possibility, a model of dopaminergic neurodegeneration based on the injection of the inflammatory agent lipopolysaccharide (LPS) within the substantia nigra was assayed in rats with ulcerative colitis (UC) induced by the ingestion of dextran sulphate sodium. We found an increase in the levels of inflammatory markers from serum (tumor necrosis factor-α, IL-1β, IL-6 and the acute phase protein C-reactive protein) and substantia nigra (tumor necrosis factor-α, IL-1β, IL-6, inducible nitric oxide synthase, intercellular adhesion molecule-1, microglial and astroglial populations) of rats with UC, as well as an alteration of the blood-brain barrier permeability and the loss of dopaminergic neurons.
View Article and Find Full Text PDFAnti-inflammatory strategies receive growing attention for their potential to prevent pathological deterioration in disorders such as Parkinson's disease, which is accompanied by inflammatory reactions that might play a critical role in the degeneration of nigral dopaminergic neurons. We investigated the influence of dexamethasone - a potent synthetic member of the glucocorticoids class of steroid hormones that acts as an anti-inflammatory - on the degeneration of the dopaminergic neurons of rats observed after intranigral injection of thrombin, a serine protease that induces inflammation through microglia proliferation and activation. We evaluated tyrosine hydroxylase (TH)-positive neurons as well as astroglial and microglial populations; dexamethasone prevented the loss of astrocytes but was unable to stop microglial proliferation induced by thrombin.
View Article and Find Full Text PDFTissue-type plasminogen activator (tPA) is the only drug approved for the treatment of thromboembolic stroke, but it might lead to some neurotoxic side effects. tPA is a highly specific serine proteinase, one of the two principal plasminogen activators and one of the three trypsin-like serine proteinases of the tissue kallikrein family. We have observed that tPA injection in the SN leads to the degeneration of the dopaminergic neurons in a dose-dependent manner, without affecting the GABAergic neurons.
View Article and Find Full Text PDFWe have performed intrastriatal injection of thrombin and searched for distant effects in the cell body region. In striatum, thrombin produced a slight loss of striatal neurons as demonstrated by neural nuclei immunostaining - a non-specific neuronal marker - and the expression of glutamic acid decarboxylase 67 mRNA, a specific marker for striatal GABAergic interneurons, the most abundant phenotype in this brain area. Interestingly, striatal neuropil contained many boutons immunostained for synaptic vesicle protein 2 and synaptophysin which colocalize with tyrosine hydroxylase (TH), suggesting a degenerative process with pre-synaptic accumulation of synaptic vesicles.
View Article and Find Full Text PDF3-Nitropropionic acid (3-NP), an inhibitor of the mitochondrial enzyme succinate dehydrogenase, induces neuronal degeneration in the striatum. It is known that dopamine (DA) enhances this toxic effect. In this work, we study how the increase of DA influences the toxic effect of 3-NP on DAergic terminals, GABAergic neurons, astroglia and microglia in the striatum.
View Article and Find Full Text PDFAnti-inflammatory strategies have attracted much interest for their potential to prevent further deterioration of Parkinson's disease. Recent experimental and clinical evidence indicate that statins - extensively used in medical practice as effective lipid-lowering agents - have also anti-inflammatory effects. In this study, we investigated the influence of simvastatin on the degenerative process of the dopaminergic neurons of the rat following intranigral injection of lipopolysaccharide (LPS), a potent inductor of inflammation that we have previously used as an animal model of Parkinson's disease.
View Article and Find Full Text PDFIntranigral injection of lipopolysaccharide (LPS), a potent inductor of inflammation, induces degeneration of dopaminergic neurons, along with an inflammatory process that features activation of microglial cells and loss of astrocytes. To test the involvement of dopamine (DA) in this degeneration induced by LPS, we treated albino Wistar rats with different concentrations of alpha-methyl-p-tyrosine (alpha-MPT), an inhibitor of tyrosine hydroxylase (TH) activity. Results showed that alpha-MPT prevented LPS-induced loss of TH immunostaining and expression of mRNA for TH and DA transporter; it also prevented substantial activation of microglial cells.
View Article and Find Full Text PDF